• Title/Summary/Keyword: sewage drainage

Search Result 60, Processing Time 0.021 seconds

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

Cooperation plan between South-North Korea in the water environment sector (물환경분야 남북한 협력방안)

  • Kim, Geonha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • With growing expectations for economic cooperation between the two Koreas, there is much interest in participating in the construction of infrastructure in North Korea. In particular, water and sewage infrastructure is the four major social infrastructures in addition to housing, transportation, electricity and telecommunications. North Korea is known to have severe water pollution and ecosystem destruction in major rivers, water pollution and soil pollution in mining areas are serious, and water and sewage infrastructures in cities other than Pyongyang are known to be weak. Preemptive investment in water supply and drainage in North Korea is the foundation for securing the quality of life of the North Korean and is the foundation of public health and industry. It is a leading investment to reduce the cost of unification and is a new growth engine for the water reloded industry. In this study, we proposed a plan to exchange and cooperate in water environment for building water infrastructure of North Korea by examining the data related to water quality, water resources, water disaster, related legal system and human resources exchange situations in North Korea.

A Study on the Composition Principle of the Gyeongbokgung Drainage Facility - Focused on the review of Gyeongbokgung excavation survey - (경복궁(景福宮) 배수시설(排水施設)의 조성원리(造成原理)에 관한 연구 - 경복궁 발굴조사 자료에 대한 검토를 중심으로 -)

  • Kim, Tae Min;Nam, Ho Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.4
    • /
    • pp.120-145
    • /
    • 2018
  • This study intended to examine the drainage facility of Gyeongbokgung Palace based on the traces of the relic found during the excavation survey. Historical records indicate that various efforts have been made for smooth drainage facility for the palace since the foundation of the Joseon Dynasty. Although there are no drawings showing the image of early appearance of Gyeongbokgung Palace during the foundation, it is possible to estimate it through the drawings prepared after the King Yeongjo's reign. The image of the palace after reconstruction can be seen through the "Bukgwoldohyeong" and other relevant documents. At this present, since the survey intends to determine the image of Gyeongbokgung Palace during the reign of King Gojong based on the standard restoration plan of the Cultural Heritage Administration, this study also focused on the drainage facility of Gyeongbokgung Palace during King Gojong's reign, particularly on the collecting wells and culverts of six areas including "Chimjeon Hall", "Taewonjeon Hall", "Geoncheongung Hall", "Sojubang Hall", "Hamhwadang - Jipgyeongdang - Yeonghundang Hall", and "Heungbokjeon Hall". Gyeongbokgung Palace is divided into various zones composed of the central halls and surrounding corridors, and the drains also primarily start from each hall and later join the central drain of the zone. The central drain then leads to the "Eo-gu(御溝)" and the water led to the "Eo-gu" is finally discharged through the water gate. It appears that this series of processes were basically devised to coordinate artificial drain with the natural drain using the natural geographical features of the palace. Research showed that the collecting well where the draining begin was installed in the area where a large amount of household sewage was generated but mostly in the corners where corridors met or corridors and wall met. This appears to be an arrangement to handle the water falling from the roof and household sewage. Also, "Ju(廚)" was installed mainly at the end of the corridor to handle household sewage. The installation of these drainage facilities shows the possibility that the drainage of Gyeongbokgung was very compact under a series of plans.

Comparative Study on Evaluating Low-Flow in Ungauged Watershed (미계측 유역에서 저수량 산정 방법 비교 연구)

  • Baek, Kyong Oh
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the methodologies for evaluating the low-flow at the ungauged watershed are reviewed and assessed. The ungauged watershed can be classified into different situations such as the partially recorded watershed and the completely ungauged watershed. The extension method and the percentile method are used to evaluated the low-flow at the partially recorded watershed. The drainage-area ratio method and the regional regression method are used at the completely ungauged watershed. These four methods are applied and validated based on the hydrological and geometric data acquired from unit watersheds in Han River basin for TMDLs. In case of partially recorded watershed, the values of low-flow evaluated by the extension method are in better agreement with measured flow-rate rather than those by the percentile method. In case of completely ungauged watershed, the drainage-area method is broadly used to estimate the low-flow. It must be paid attention to consider the treated sewage discharge produced at watersheds when applying the method.

Regional Characteristics of Nonpoint Source Pollutant Loads in the Upstream Watersheds of Nakdong River (낙동강 상류유역의 지역별 비점오염부하 특성)

  • Choe, Gyeong-Suk;Son, Seong-Ho
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.283-292
    • /
    • 2006
  • The characteristics of nonpoint source pollutant loads in upstream of Nakdong River were studied through analysis of pollutant loads of 10 sub-watersheds divided based on administrative district. The discharge and pollutant concentration of each sub-watershed were collected from Nakdong-River Water Research Institute and Daegu Regional Environmental office, respectively. Pollution items analysed in this study were BOD, T-N and T-P. The delivery loads of the nonpoint source pollutions of each sub-watershed were calculated after analysing the concentration of the pollution of each site. Several points were found from the results. Firstly, in general, city areas including Sangju, Andong showed higher degree of nonpoint pollution than country areas including Cheongsong, Yeongyang. The sub-watersheds located upstream side, such as Yeongju, Bonghwa, Necessarily show better water quality than the sub-watersheds located downstream side, such as Mungyeong, Uiseong. This result indicates that a given pollution condition within the watershed can be more sensitive than location factor to the level of water quality. Secondly, the delivery load and area of watershed were not necessarily correlated in the sense of water quality, while the discharge was shown to be highly correlated to the delively load of pollution. Lastly, sewage and waste caused from population and livestock, as well as landuse factor, were found to significantly contribute to the water pollution. Alternative solutions for controlling pollution source, therefore, should be provided to meet target levels of water quality in these regions.

  • PDF

Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model (도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로)

  • Lee, Jaehyun;Park, Kihong;Jun, Changhyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.

Settlement of Fine Recycled-concrete Aggregates Foundation under Sewage Conduit System (폐콘크리트 재생잔골재의 하수관거 모래기초 적용에 따른 침하 거동)

  • Oh, Je-Ill;Ahn, Nam-Kyu;Lee, Ju-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.486-490
    • /
    • 2005
  • Fine recycled-concrete aggregates(RCAs) instead of natural sand were tested for a foundation material under sewage conduit system, which was evaluated based on foundation settlement at various conditions. To obtain this applicability of RCAs, the settlement behavior was simulated with FLAC program based on the difference of material properties, and immediate settlement behaviors and the change of material properties under the simulated drainage conditions also tested at the various loading conditions in the laboratory. Finally, large-scale settlement test in the field was conducted to prove the above feasibilities. Subsequently, the amount of settlement from the FLAC simulation was calculated under $5.0{\times}10^{-6}\;m$ and the extent of settlement and property changes (porosity, permeability and waster absorption) was not noticeable from the laboratory experiments. Also, settlement monitoring from the field experiment showed the consistent results with laboratory experiments except for the consolidation settlement(=5 mm) of the round below the foundation. In summary, adopting fine RCAs as a foundation material for sewage conduit system was resonable based of geotechnical point of view.

A Study on the Daily Probability of Rainfall in the Taegu Area according to the Theory of Probaility (대구지방(大邱地方)의 확률일우량(確率日雨量)에 관(關)한 연구(硏究))

  • Kim, Young Ki;Na, In Yup
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.225-234
    • /
    • 1971
  • With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$ $\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$ $S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$ $S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$ $W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$ $F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$ $F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.

  • PDF

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

A Study on the Characteristics of Pollutant loads runoff in the Drainage Area of Mangyeong River (만경강 유역의 오염부하 유출특성에 관한 연구)

  • Eom, Myung-Chul;Lee, Kwang-Ya;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.607-610
    • /
    • 2003
  • The object of this study is to analyze the characteristics of pollutant loadings on rainy day compared with normal day in the Mangyeong catchment area of Saemangeum tidal reclaimed area. On rainy day, the concentrations of BOD, COD, T-N and T-P are smaller than those on normal day, in spite of the pollutant loading themselves are increased significantly on rainy day due to non point source pollution, such as CSOs(combined sewage overflows), runoff from agricultural land use and so on.

  • PDF