• Title/Summary/Keyword: settling velocity

Search Result 175, Processing Time 0.027 seconds

Characteristics of Suspended Fine-Grained Particles in Settling Columns (침강수주에서 부유된 광물성 미립자의 특성)

  • Kim Jong-Woo;Yoon Sei-Eui;Lee Jong-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.393-398
    • /
    • 2005
  • Suspended fine mineral particles are deposited at the areas with low flow velocity and low transportation capacity in rivers, reservoirs and lakes. It can be contaminated by heavy metals. Examples of problem fields art dredging of sediment, water pollutants, and maintenance of navigation channels and construction works. To deal with the settling problems it is necessary to understand tile physico-chemical characteristics of cohesive sediment under varying density of particle and ion addition(NaOH, HCl, NaCl), which is dissolved in river, because fine-grained cohesive sediment can lead to flocculation with the physico-chemical influences and takes different characteristics. Experiments with fresh and saline water are followed with fine-grained sediments(alumina and quartz) in settling columns. Settling velocity of suspended fine particles in still water was measured with a pressure sensor(maximum 10 mbar). Until the initial concentration of 20,000 mg/1 of alumina and quartz the settling velocity was on the increase. Above this initial concentration was it on the decrease. In an acid condition, which causes strong flocculation, average settling velocity of quartz powder was high. In an alkaline water low average settling velocity of it was observed. However, alumina behaved exactly contrarily.

  • PDF

Settling Characteristics of Saemankeum fine-Cohesiv Sediments : Effects of Physico-Chemical Properties (새만금 미세점착성 퇴적물의 침강특성 : 퇴적물의 물리.화학적 특성의 영향)

  • Hwang, Gyu-Nam;Jo, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.475-484
    • /
    • 2002
  • A series of settling tests and physico-chemical property tests on Saemankeum fine-cohesive sediments has been conducted in order to investigate the correlation between settling properties and their physico-chemical properties which are represented as grain size distribution, mineralogical composition, and percentage of organic contents. Experimental results of physico-chemical property tests show that Saemankeum sediments are relatively large in average grain size(52${\mu}{\textrm}{m}$), and contain very small organic materials(2%), and are dominantly composed of Quarts in mineralogical aspect which has relatively low cohesion. Thus, Saemankeum sediments might be specified as the sediments whose settling properties are more influenced by the gravity than the cohesion. This characteristics of Saemankeum sediments are found to lead to relatively small settling velocity in flocculated settling region in which increasing cohesion results in increasing settling velocity, while relatively large settling velocity in hindered settling region in which settling velocity decreases with increasing cohesion.

Experimental investigation of turbulent effects on settling velocities of inertial particles in open-channel flow (개수로 흐름에서 난류가 관성입자의 침강속도에 미치는 영향에 대한 실험연구)

  • Baek, Seungjun;Park, Yong Sung;Jung, Sung Hyun;Seo, Il Won;Jeong, Won
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.955-967
    • /
    • 2022
  • Existing particle tracking models predict vertical displacement of particles based on the terminal settling velocity in the stagnant water. However, experimental results of the present study confirmed that the settling velocity of particles is influenced by the turbulence effects in turbulent flow, consistent with the previous studies. The settling velocity of particles and turbulent characteristics were measured by using PTV and PIV methods, respectively, in order to establish relationship between the particle settling velocity and the ambient turbulence. It was observed that the settling velocity increase rate starts to grow when the particle diameter is of the same order as Kolmogorov length scale. Compared with the previous studies, the present study shows that the graphs of the settling velocity increase rate according to the Stokes number have concave shapes for each particle density. In conclusion, since the settling velocity in the natural flow is faster than in the stagnant water, the existing particle tracking model may estimate a relatively long time for particles to reach the river bed. Therefore, the results of the present study can help improve the performance of particle tracking models.

Effective correlation between coagulation efficiency and the sludge settling characteristic (슬러지 응집효율이 침강특성에 미치는 상관관계에 대한 연구)

  • Han, Gee-Bong;Yoon, Ji-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.151-159
    • /
    • 2006
  • In these days, the importance of sludge treatment is emerging due to the London Convention, so this study was conducted to propose the alternatives for the improved sludge treatment on the organic wastewater and sewage sludge with JAR test and settling column equipped with stirrer. The minimum coagulant dosage to earn the optimum sludge settling efficiency resulted from 200mg/l and each critical sludge settling interface showed no distinct difference when PAC was dosed over 200mg/l. Accordingly, Clarification Rate(CR) with 200mg/l dosage was calculated to CR=(Ho-Ht) / Ho=1-0.4=0.6 because the critical sludge settling height stopped at 0.4. The settling velocity of sludge interface was decreased with the increase of MLSS concentration but rather increased with MLSS concentration over 1,000mg/l. This resulted from positive effect of interacted coagulation for floc formation by transfer to the zone of compressed settling when MLSS concentration increased over 1,000mg/l. The settling velocity of sludge interface showed $28.66{\times}10^{-3}/min$ for average settling velocity of sewage sludge which is 6.7 times higher than $4.25{\times}10^{-3}/min$ for average settling velocity of organic wastewater sludge. The increasing rate of CR for organic wastewater activated sludge was higher than that of settling velocity under 200mg/l of PAC dosage but settling velocity was higher than CR over 200mg/l of PAC dosage. However, in case of sewage sludge, the differential rate of CR was low when PAC dosage was increased but the settling velocity was suddenly increased with over 200mg/l dosage. Therefore coagulation effect was more efficient to MLSS settling velocity rather than SS removal effect in the supernatant.

  • PDF

Vertical distribution of suspended sediment concentration - A case study in Cu Lao Dung Coastal Areas (Vietnam)

  • Tien H. Le Nguyen;Phuoc H. Vo Luong
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.313-324
    • /
    • 2023
  • The vertical distribution of suspended sediments in the mangrove-mud coast is complicated due to the characterization of cohesive sediment properties, and the influence of hydrodynamic factors. In this study, the time-evolution of suspended sediment concentration (SSC) in water depth is simulated by a one-dimensional model. The model applies in-situ data measured in October 2014 at the outer station in Cu Lao Dung coastal areas, Soc Trang, Vietnam. In the model, parameters which have influence on vertical distribution of SSC include the settling velocity Ws and the diffusion coefficient Kz. The settling velocity depends on the cohesive sediment properties, and the diffusion coefficient depends on the wave-current dynamics. The settling velocity is determined by the settling column experiment in the laboratory, which is a constant of 1.8 × 10-4 ms-1. Two hydrodynamic conditions are simulated including a strong current condition and a strong wave condition. Both simulations show that the SSC near the bottom is much higher than ones at the surface due to higher turbulence at the bottom. At the bottom layer, the SSC is strongly influenced by the current.

Settling behaviour of clay slurries enhanced by using electrokinetics (동전기에 의한 점토슬러리의 침강 촉진에 관한 연구)

  • Kim, Dae-Ho;Kim, Soo-Sam;Lee, Myung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1061-1064
    • /
    • 2008
  • A completion of settling process takes a lot of time for dredged materials of high moisture content, such as contaminated sludge, in landfill site. In general, additives (e.g. flocculants) are used for reducing settling time of such colloidal material, which results in the increase of sludge volume, and hence much space is required in landfill site. This study is to suggest alternative method in order to enhance the settling process of cohesive clayey soils. A number of gravitational sedimentation tests as well as electrokinetic experiments were conducted to investigate the variation of initial moisture content on the settling behaviour of clay slurry. Surface settlement, electric current and local voltage gradient were monitored during the experiment, and moisture content and soil pH were measured after the experiment. From the results, the application of electrokinetics was found to be effective in volume reduction (i.e. increase of settling velocity and decrease of final moisture content) by comparison with gravitational settling process.

  • PDF

Behavior of small particles in isotropic turbulence in the presence of gravity (중력이 존재하는 등방성 난류에서 작은 입자의 유동)

  • Cho, Seong-Gee;Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2396-2400
    • /
    • 2008
  • The motion of small heavy particles in homogeneous isotropic turbulence in the present of gravity is investigated using Direct Numerical Simulations (DNS) at moderate Reynolds number. The Lagrangian velocity and acceleration statistics of particles and of flow for a wide range of Stokes number, defined as the ratio of the particle response time to Kolmogorov time scale of turbulence, were obtained for the direction of the gravity and normal direction, respectively. It is found that particles lose their correction faster than the case without gravity. Then, a significant increase in the average settling velocity was observed for a certain range of Stokes number. Our focus is placed on gravitational effect on very small particles. Our simulations show that as the Stokes number reduces to zero, their mean settling velocity approaches the terminal velocity in still fluid.

  • PDF

Prediction of Hindered Settling Velocity of Bidisperse Suspensions (이중 입도 분포를 가진 현탁액의 침강 속도 예측)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.609-616
    • /
    • 2008
  • The present study is concerned with a simple numerical method for estimating the hindered settling velocity of noncolloidal suspensions with bidisperse size distribution of particles. The method is based on an effective-medium theory which uses the conditional ensemble averages for describing the velocity fields or other physical quantities of interest in the suspension system with the particles randomly placed. The effective-medium theory originally developed by Acrivos and Chang[1] for monodisperse suspensions is modified for the bidisperse case. Using the radial distribution functions and stream functions the hindered settling velocity of the suspended particles is calculated numerically. The predictions by the present method are compared with the previous experimental results by Davis and Birdsell[2] and Cheung et al.[3]. It is shown that the estimations by the effective-medium model of the present study reasonably agree with the experimental results.

Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model (Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석)

  • Park, I.S.;Kang, I.G.;Choi, K.D.
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF

Settling Velocity of Suspended Material in Nakdong River (낙동강 수계에서 부유물질 침강속도)

  • Joe, Gyu-Soo;Seong, Jin-Uk;Park, Je-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1533-1540
    • /
    • 2011
  • This study was conducted to identify the sedimentation quantity and settling velocity, sediment fundamental data that an important position of water quality management of Seston, POC, PP and PN in Nakdong river basin using a sediment traps to collect suspended material pollutants. Nakdong river basin is that average sedimentation quantity of seston, POC, PP and PN were 124~1,125 g/$m^2$/d, 2,963~25,072, 26~347, 445~2,184 mg/$m^2$/d, respectively. Settling velocity of Seston, POC, PP and PN were 17.0, 35.5, 8.7, 2.4 m/d. It was appeared that various results according to the river flow, weather and other environmental factors. There was no significant correlation, each suspended material pollutants. Sedimentation rates are likely to be overestimated because the flow is not considered to resuspended materials. Therefore diversification through continued monitoring is needed to be analyzed.