Browse > Article

Prediction of Hindered Settling Velocity of Bidisperse Suspensions  

Koo, Sangkyun (Department of Industrial Chemistry, Sangmyung University)
Publication Information
Applied Chemistry for Engineering / v.19, no.6, 2008 , pp. 609-616 More about this Journal
Abstract
The present study is concerned with a simple numerical method for estimating the hindered settling velocity of noncolloidal suspensions with bidisperse size distribution of particles. The method is based on an effective-medium theory which uses the conditional ensemble averages for describing the velocity fields or other physical quantities of interest in the suspension system with the particles randomly placed. The effective-medium theory originally developed by Acrivos and Chang[1] for monodisperse suspensions is modified for the bidisperse case. Using the radial distribution functions and stream functions the hindered settling velocity of the suspended particles is calculated numerically. The predictions by the present method are compared with the previous experimental results by Davis and Birdsell[2] and Cheung et al.[3]. It is shown that the estimations by the effective-medium model of the present study reasonably agree with the experimental results.
Keywords
effective-medium model; hindered settling velocity; bidisperse suspensions; radial distribution function; conditional ensemble average;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 G. K. Batchelor and C. S. Wen, J. Fluid Mech, 124, 495 (1982).   DOI   ScienceOn
2 S. Mirza and J. F. Richardson, Chem. Eng. Sci., 34, 447 (1979).   DOI   ScienceOn
3 J. F. Richardson and W. N. Zaki, Trans. Inst. Chem. Eng, 32, 35 (1954).
4 J. L. Lebowitz, Phys. Rev., 133, A895 (1964).   DOI
5 L. G. Leal, Laminar flow and convective transport processes: Scaling principles and asymptotic analysis, Butterworth-Heinemann, Boston (1992).
6 G. Mo and A. S. Sangani, Phys. Fluids, 6, 1637 (1994).   DOI   ScienceOn
7 R. G. Cox, Int. J. Multiphase Flow, 16, 617 (1990).   DOI   ScienceOn
8 S. P. Lin, Chem. Eng. Comm., 29, 201 (1984).   DOI   ScienceOn
9 E. Barnea and J. Mizrahi, Chem. Eng. J., 5, 171 (1973).   DOI   ScienceOn
10 M. S. Selim, A. C. Kothari, and R. M. Turian, AIChE J., 29, 1029 (1983).   DOI   ScienceOn
11 K. H. Song and S. Koo, J. Ind. Eng. Chem., 12, 368(2006).
12 E. M. Tory and R. A. Ford, Int. J. Miner. Process., 73, 119 (2004).   DOI   ScienceOn
13 M. Hoyos, J. C. Bacri, J. Martin, and D. Salin, Phys. Fluids, 6, 3809 (1994).   DOI   ScienceOn
14 C. J. Throop and R. J. Bearman, J. Chem. Phys. 42, 2838 (1965).   DOI
15 J. K. Percus and G. Y. Yevick, Phys. Rev., 110, 1 (1958).   DOI
16 R. H. Davis and K. H. Birdsell, AIChE J., 40, 570 (1994).   DOI   ScienceOn
17 P. J. Leonard, J. D. Henderson, and J. A. Barker, Mol. Phys. 21, 107 (1973).   DOI   ScienceOn
18 A. C. Ladd, J. Chem. Phys., 93, 3484 (1990).   DOI
19 A. Acrivos and E. Y. Chang, Phys. Fluids 29, 3 (1986).   DOI
20 M. K. Cheung, R. L. Powell, and M. J. MaCarthy, AIChE J., 42, 271 (1996).   DOI
21 H.-Q. Nguyen and A. J. C. Ladd, J. Fluid Mech., 525, 73 (2005).   DOI   ScienceOn
22 R. Davies, Powder Tech, 2, 43 (1968).   DOI   ScienceOn
23 S. Koo and A. S. Sangani, Phys. Fluids, 14, 3522 (2002).   DOI   ScienceOn