• 제목/요약/키워드: settlement estimation

검색결과 212건 처리시간 0.029초

연약지반에 축조하는 강제치환 호안사석의 시공관리방법에 관한 연구

  • 김유성;박병갑
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1466-1472
    • /
    • 2010
  • In order to construct extremely large scale of sea dike like Saemanguem dike, extremely large amount of mass of rock are needed. In this case, it is general methods to estimate required amount of rock mass based on characteristics of consolidation settlement and bearing capacity of seabed, because it is impossible to estimate exact amount of rock material based on varied seabed condition.. Even in this general methods, it is very few case to manage rock mass amount by estimation of actual input rock mass but the main point is focused on the final section formation considering of designed section and reserve embankment, so excessive or underestimating result of rock mass would be occurred surely. This general methods is not resonable in the points of economic and stable. In this study, optimum construction management method of rubble mound in the 3rd section construction of Saemanguem sea dike is suggested based on comparing required rock mass estimating from consolidation settlement theory with actual input rock mass. It is found out that the optimum input quantity of rock mass is about $1,900{\sim}2,000m^3$/day.

  • PDF

Levenberg-Marquardt 인공신경망 알고리즘을 이용한 지반공학문제의 적용성 검토 (Application of Artificial Neural Network with Levenberg-Marquardt Algorithm in Geotechnical Engineering Problem)

  • 김영수;이재호;서인식;김현동;신지섭;나윤영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.987-997
    • /
    • 2008
  • Successful design, construction and maintenance of geotechnical structure in soft ground and marine clay demands prediction, control, stability estimation and monitoring of settlement with high accuracy. It is important to predict and to estimate the compression index of soil for predicting of ground settlement. Lab. and field tests have been and are indispensable tools to achieve this goal. In this paper, Artificial Neural Networks (ANNs) model with Levenberg-Marquardt Algorithm and field database were used to predict compression index of soil in Korea. Based on soil property database obtained from more than 1800 consolidation tests from soils samples, the ANNs model were proposed in this study to estimate the compression index, using multiple soil properties. The compression index from the proposed ANN models including multiple soil parameters were then compared with those from the existing empirical equations.

  • PDF

Fiber Mat 의 Sand Mat 대체가능성평가를 위한 실험적 연구 (A Study on the experimental estimation of substitutability of Fiber Mat for Sand Mat)

  • 이송;정용은
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.280-285
    • /
    • 2005
  • At present, there are several problems related with sand mat which is used as a way to accelerate consolidation settlement, act like an underground drainage layer and increase trafficability simultaneously. First of all, the unbalance oft he demand and supply of sand is the one of the biggest problems, which makes not only price advance of sand but also delays a term of total construction work. Secondly, the damage of ecosystem and scenery is triggered by thoughtless sand dredging or mining. So, the need that the sand for sand mat should be replaced with a new environmental friendly material has been increased. Fiber mat may be one of the proper materials that suits the need. Therefore, we intended to compare the drainage properties of sand mat with those of fiber mat by experimental model tests. On the basis of the test results, fiber mat took shorter period of consolidation than sand mat and it's amount of settlement showed a little bit bigger than the other. In conclusion, the substitutability of fiber mat for sand mat could be placed highly in view of drainage efficiency. Furthermore, when Fiber mat is used, it has an advantage that spoil soil of the construction site or nearby site can be used for the purpose of increasing trafficability in addition to a role of drainage layer.

  • PDF

최소자승법을 이용한 준설토 문제의 System Identification (System Identification on Dredged Soil Problems using Least Square Method)

  • 유남재;박병수;김영길;이명욱
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.127-133
    • /
    • 1999
  • This paper is a research about system identification which optimizes uncertain geothechnical properties from the data measured during geotechnical design and construction. Various numerical optimization algorithms of Simplex method, Powell method, Rosenbrock method and Levenberg-Marquardt method were applied to the excavation problem to determine which method showed the best results with respect to robustness of success in finding an optimal solution to within a certain accuracy and number of function evaluations. From the results of numerical analysis, all of four algorithms are converged to exact solution after satisfying the allowed criteria, and Levenberg-Marquardt's algorithms was identified to be the most efficient method in number of function evaluations. System identification was applied to geotechnical engineering problems, possibly being occurred in field, to verify its applicability : estimation of settlement due to self-weight consolidation in dredged and filled soil. For self-weight consolidational settlement of a dredged soil, a program of evaluating the constitutive relationship of effective stress-void ratio-permeability was developed by using the technique of system identification. Thus, consolidational characteristics of a dredged soil, having a very high initial void ratio, can be evaluated.

  • PDF

매립기간 중 건조효과가 준설매립토의 압밀거동에 미치는 영향 (Effects of desiccation on the consolidation behavior of dredged and reclamated soil during period of reclamation)

  • 김진태;안중선;유남재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.515-520
    • /
    • 2006
  • Yano method had been used in predicting the settlement of self-weight consolidation of dredged soil in the construction of reclamating the dredged soil. Its estimation was found to show some different results from field measurements. The numerical analysis with PSDDF was peformed find such differences, considering the effect of desiccation on the consolidation during the remaining time after reclamation. For the parametric study, numerical analyses with/without consideration of desiccation were carried out with changing the conditions of desiccation such as the number of placing the fill and the time period between each placement. As results of analysis, estimations about consolidation settlement and distribution of water contents with consideration of desiccation was in good agreements with field measurements. It was also found that the number of placing the fill and the time period between each placement did not affect the behavior of self-weight consolidation as much as the effect of desiccation.

  • PDF

A new analytical model to determine dynamic displacement of foundations adjacent to slope

  • Varzaghani, Mehdi Imani;Ghanbari, Ali
    • Geomechanics and Engineering
    • /
    • 제6권6호
    • /
    • pp.561-575
    • /
    • 2014
  • Estimating seismic displacements has a great importance for foundations on or adjacent to slope surfaces. However, dynamic solution of the problem has received little attention by previous researchers. This paper presents a new analytical model to determine seismic displacements of the shallow foundations adjacent to slopes. For this purpose, a dynamic equilibrium equation is written for the foundation with failure wedge. Stiffness and damping at the sliding surface are considered variable and a simple method is proposed for its estimation. Finally, for different failure surfaces, the calculated dynamic displacement and the surfaces with maximum strain are selected as the critical failure surface. Analysis results are presented as curves for different slope angles and different foundation distances from edge of the slope and are then compared with the experimental studies and software results. The comparison shows that the proposed model is capable of estimating seismic displacement of the shallow foundations adjacent to slopes. Also, the results demonstrate that, with increased slope angle and decreased foundation distances from the slope edge, seismic displacement increases in a non-linear trend. With increasing the slope angle and failure wedge angle, maximum strain of failure wedge increases. In addition, effect of slope on foundation settlement could be neglected for the foundation distances over 3B to 5B.

콘크리트 표면차수벽형 석괴댐의 지진 취약도 평가 (Evaluation of Seismic Fragility of Concrete Faced Rockfill Dam)

  • 백종민;박두희;윤지남;최병한
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.103-108
    • /
    • 2018
  • 본 연구에서는 지반진동 강도에 따른 콘크리트 표면차수벽 석괴댐(CFRD)의 확률론적 피해예측을 위하여 취약도 함수를 개발하였다. 댐의 손상평가에 널리 사용되는 지표인 댐마루 침하량을 손상지수로 사용하여 경미(Minor), 중간(Moderate), 심각(Severe) 손상수준을 정의하였다. 침하량은 댐 표준단면에 대한 비선형 동적 수치해석을 통하여 계산하였다. 수치해석 모델은 원심모형시험결과와 비교하여 정확성을 검증하였다. 취약도 곡선은 대수정규분포함수로 나타내어 최대지반가속도를 기준으로 도출하였다. 본 연구에서 도출된 취약도 곡선은 댐의 실시간 피해예측에 활용될 수 있을 것으로 판단된다.

Development of new models to predict the compressibility parameters of alluvial soils

  • Alzabeebee, Saif;Al-Taie, Abbas
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.437-448
    • /
    • 2022
  • Alluvial soil is challenging to work with due to its high compressibility. Thus, consolidation settlement of this type of soil should be accurately estimated. Accurate estimation of the consolidation settlement of alluvial soil requires accurate prediction of compressibility parameters. Geotechnical engineers usually use empirical correlations to estimate these compressibility parameters. However, no attempts have been made to develop correlations to estimate compressibility parameters of alluvial soil. Thus, this paper aims to develop new models to predict the compression and recompression indices (Cc and Cr) of alluvial soils. As part of the study, geotechnical laboratory tests have been conducted on large number of undisturbed samples of local alluvial soil. The obtained results from these tests in addition to available results from the literature from different parts in the world have been compiled to form the database of this study. This database is then employed to examine the accuracy of the available empirical correlations of the compressibility parameters and to develop the new models to estimate the compressibility parameters using the nonlinear regression analysis. The accuracy of the new models has been accessed using mean absolute error, root mean square error, mean, percentage of predictions with error range of ±20%, percentage of predictions with error range of ±30%, and coefficient of determination. It was found that the new models outperform the available correlations. Thus, these models can be used by geotechnical engineers with more confidence to predict Cc and Cr.

수직구 굴착시 스마트 터널기반 지하수위 현장계측과 수치해석 비교 연구 (Comparison of measured values and numerical analysis values for estimating smart tunnel based groundwater levels around vertical shaft excavation)

  • 이동혁;정상호
    • 한국터널지하공간학회 논문집
    • /
    • 제26권2호
    • /
    • pp.153-167
    • /
    • 2024
  • 최근 도심지에 개발이 이루어지면서 지반침하가 증가하고 있으며, 그에 대한 원인 중 하나는 지하수위의 변화이다. 본 연구에서는 굴착깊이가 깊은 수직구 굴착공사의 한 예로 「◯◯◯◯ 복선전철 민간투자사업」의 작업구를 대상으로 지하수위 저하량에 대한 현장계측 결과와 수치해석 결과를 비교 분석하였다. 이를 통하여 지하수위 저하에 대한 검토를 실시할 경우, 현장조건들이 충분히 반영될 수 있도록 지반조건을 분석하여 적용하여야 하며, 지하수위는 측정시기를 확인하여 적절한 수위를 적용하여야 시공 시 지하수위의 저하량과 유사한 예측 값을 도출해 낼 수 있음을 확인하였다.

A simplified framework for estimation of deformation pattern in deep excavations

  • Abdollah Tabaroei;Reza Jamshidi Chenari
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.31-48
    • /
    • 2024
  • To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.