• 제목/요약/키워드: setting time of concrete

검색결과 413건 처리시간 0.027초

W/B 및 유동성 변화에 따른 시멘트 킬른더스트 혼입 콘크리트의 공학적 특성 (Engineering Properties of Concrete Incorporating Cement Kiln Dust with W/B and Fluidity)

  • 주은희;손명수;차천수;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.628-631
    • /
    • 2004
  • In this paper, mechanical properties of concrete incorporating CKD are discussed with W/B and fluidity. For setting properties, an increase in W/B retarded setting time greatly in $5^{\circ}C$, while accelerated in $20^{\circ}C$. For fluidity, an increase in slump delayed the setting time with dosage of SP agent. The presence of CKD has little influence on setting time compared with plain concrete. For compressive strength, an increase in maturity enhanced compressive strength. Fluidity had no relation to compressive strength. At low curing temperature, concrete with CKD has slight strength loss compared with plain concrete. However, remarkable strength loss at low curing temperature in early stage was not found, which can be applicable to low temperature environment concrete placing.

  • PDF

Durometer를 이용한 고유동 콘크리트의 응결시간 판정 방법 (Estimation of the Setting Time of the High Flowing Concrete Using Durometer)

  • 한민철;신용섭;한인덕
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.143-150
    • /
    • 2019
  • 본 연구는 고무경도계인 Durometer를 사용하여 콘크리트의 표면마감 작업시간 결정과 관련있는 응결시간을 판정하는 방법에 대하여 제안하고자 하였다. 연구의 결과로 Durometer 사용시 모르타르와 콘크리트의 두가지 요소 모두에서 Proctor 관입저항기와 높은 상관성이 있는 것으로 분석되어 Durometer를 사용한다면 콘크리트의 과학적이고 정량적인 응결시간을 확인 할수 있을 것이라 판단된다. 따라서 Durometer C 타입의 경우는 초결 측정으로 40 HD로 하여 마감작업 가능 시간결정에, D 타입의 경우는 10 HD로 하여 종결시간 측정으로 마감작업의 한계시간, 양생개시 시간 확인 등에 유용하게 활용될 수 있는 것으로 판단된다.

플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구 (The Study on the Strength Properties of High Volume Fly-Ash Concrete)

  • 백민수;이영도;정상진
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

초기재령 콘크리트의 응결특성 모델링 (Modeling of the Setting Characteristics of Early-age Concrete)

  • 조호진;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.391-396
    • /
    • 2002
  • The so called setting is defined as the onset of rigidity in fresh concrete. In the analysis of the early-age concrete behavior, we consider fresh concrete as a structural element immediately after mixing. But for the activation of real structural behavior of fresh concrete, it takes some time after the beginning of hydration reaction. So, the very early age deformations due to hydration heat and shrinkage which occur before the setting do not produce restraint stresses. In this paper, we propose a setting characteristic model based on the so called percolation theory. From the analysis using the model, the influence of curing temperature is investigated and analytical results are compared with experimental results. From the comparison, the validity of proposed model is verified. This model is also applied to evaluate stress development in a temperature-stress test machine (TSTM) specimen and then the effect of setting time on the stress development is discussed.

  • PDF

초지연제의 종류 및 혼입율 변화에 따른 콘크리트의 응결 및 역학적 특성 (Setting and Mechanical Properties of Concrete Under Various Types and Contents of Super retarders)

  • 심보길;윤치환;전충근;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1195-1198
    • /
    • 2000
  • In this paper, setting and strength properties of concrete with contents of super retarding agent are discussed. Gluconic acid and sucrose and used for super retarding agent. According to experimental results, as super retarding agent content increases, slump show to be increased, while air content decrease about 1~2%. In case of setting properties, as super retarding agent content increases, setting time delays considerable. When gluconic acid and sucrose is added about 0.3%, it delays more than 10days. Compressive strength of concrete of concrete with super retarding agent shows to be higher than that without it. Retarding of setting time of concrete using gluconic acid is longer than that using sucrose.

  • PDF

응결시간차를 활용한 매스콘크리트의 수화열 조정공법 (A Method on the Control of Hydration Heat of Mass Concrete Considering the Difference of Setting Time)

  • 심보길;윤치환;한민철;김기철;오선교;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.379-384
    • /
    • 2001
  • This Paper Presents field application test results of mass concrete using super retarding agent. The field test was carried out at mat foundation(thickness 1m) of newly constructed information center of Chongju university. Placing lift composed of 2 layers, and each layer is 50cm. Fly ash and flowing method is also applied. Difference of setting time of concrete between with super retarding agent and without super retarding agent is considered. Concrete without super retarding agent is placed at upper layer and with super retarding agent at lower layer According to test results, the reducing method of hydration heat considering difference of setting time with super retarding agent can reduce the highest temperature about 3~4$^{\circ}C$, and delay the peak time about 3~4days. Compressive strength using super retarding agent is somewhat higher than that of normal concrete. Accordingly, super retarding agent does not affect the strength development.

  • PDF

개량형 듀로미터를 이용한 초지연 콘크리트의 응결시간 분석 (Setting Time Prediction of Super Retarding Concrete Using Improved Durometer)

  • 한수환;최윤호;연규원;김종;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2020
  • In this study, the feasibility of the durometer into super retarding concrete was studied by comparing the penetration resistance with the hardness of each durometer using the penetration resistance and the improved Durometer and Durometer A-Type according to the ultra-delay mixture rate. The test results showed that initial setting time by improved Durometer and Durometer A-Type were fixed at 25, 50 HD, respectively, and the 35, 80 HD showed at final setting time. It was also found that the use of the durometer can be available to measure the setting time of the concrete.

  • PDF

혼화재 치환 고유동 콘크리트에서 응결시간 판정시 듀로메타 사용 가능성 분석 (A Feasibility Analysis of the Durometer for Setting Time Assessment of the High Fluidity Concrete with SCMs)

  • 이혁주;이영준;김태우;민병오;이준석;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.187-188
    • /
    • 2018
  • For the concrete construction, finishing process is inevitable for crack control and improving permeability. The finishing process is closely related with setting time, but currently, the timing of the finishing process is not managed with scientifically but feeling of the workers. In this research, therefore, by comparing with the setting time measured with penetrating method, the feasibility of durometer for measuring setting time was analyzed. As a result, there was a high relationship between setting time measured with penetration method and durometer. Therefore, it is expected that using durometer can be a good solution for assessing setting time for finishing process.

  • PDF

고강도 콘크리트의 초기강도 발현에 따른 거푸집 탈형시기의 결정 (Determination of Removal Time of the Forms with the Strength Development of High Strength Concrete at Early Age)

  • 김은호;김영진;한민철;신병철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.99-102
    • /
    • 2003
  • This study discusses the determination of removal time of forms with early strength development in high strength concrete. According to the results, as W/B increases by 10%, the setting time is shortened by about 2 hours. The time when compressive strength of 8 MPa is gained is about 20 hours. Bond strength between form and concrete is highest around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting, but after that, it is little. The rebound value of P type schmidt hammer is measured faster by 2-3 hours than compressive strength. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 34

  • PDF

인천국제공항 줄눈콘크리트 슬래브의 초기재령 특성분석 (Analysis of Early-age Property of JPCP Slab of Incheon International Airport)

  • 썬런쥬안;정진훈;천성한;임진선
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.335-339
    • /
    • 2007
  • 줄눈콘크리트 슬래브의 초기 재령특성 분석을 위하여 인천국제공항 건설 현장에 설치된 슬래브에 온도와 습도를 측정 후 해석하였다. 성숙도 방법을 이용하여 결정한 콘크리트 슬래브의 초기경화시간은 콘크리트 타설 후부터 약 2시간 40분이었다. 콘크리트 슬래브 변형률의 변화는 초기경화 시간 이후부터 시작되었고, 이는 센서가 설치된 각 위치와 깊이에서 서로 다른 값을 나타냈다.

  • PDF