• Title/Summary/Keyword: set-based algorithm

Search Result 2,227, Processing Time 0.03 seconds

A study on machine-cell formation in cellular manufacturing based on fuzzy set (퍼지집합에 기초한 셀 생산방식에서의 머신-셀 구성에 관한 연구)

  • Leam, Choon-Woo;Lee, Noh-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.305-310
    • /
    • 1997
  • In this paper, a fuzzy set based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy logic is emoloyed to express the degree of appropriateness when alternative machines are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

Topology Optimization of Shell Structures Using Adaptive Inner-Front Level Set Method (AIFLSM) (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.354-359
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

A machine-cell formation method based on fuzzy set (퍼지 이론에 기초한 머신-셀 구성방법)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1565-1568
    • /
    • 1997
  • In this paper, a fuzzy based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy lovic is employed to express the degree of appropriateness when alternative machnies are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF

Vertically Partitioned Block Nested Loop join on Set-Valued Attributes (집합 값을 갖는 애트리뷰트에 대한 수직적으로 분할된 블록 중첩 루프 조인)

  • Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.209-214
    • /
    • 2008
  • Set-valued attributes appear in many applications to model complex objects occurring in the real world. One of the most important operations on set-valued attributes is the set join, because it provides a various method to express complex queries. Currently proposed set join algorithms are based on block nested loop join in which inverted files are partitioned horizontally into blocks. Evaluating these joins are expensive because they generate intermediate partial results severely and finally obtain the final results after merging partial results. In this paper, we present an efficient processing of set join algorithm. We propose a new set join algorithm that vertically partitions inverted files into blocks, where each block fits in memory, and performs block nested loop join without producing intermediate results. Our experiments show that the vertical bitmap nested set join algorithm outperforms previously proposed set join algorithms.

  • PDF

Template Matching-Based Target Recognition Algorithm Development and Verification using SAR Images (SAR 영상을 이용한 템플릿 매칭 기반 자동식별 알고리즘 구현 및 성능시험)

  • Lim, Ho;Chae, Daeyoung;Yoo, Ji Hee;Kwon, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.364-377
    • /
    • 2014
  • In this paper, we have developed a target recognition algorithm based on a template matching technique using Synthetic Aperture Radar (SAR) images. For efficient computations, Radon transform-based azimuth estimation algorithm was used with the template matching. MSTAR data set was divided into two groups according to the depression angles, which were a train set and a test set. Template data were generated by rotating and cropping chips which were from MSTAR train set using the azimuth estimation algorithm. Then the template matching process between test data and template data was performed under various conditions. Performance variation according to contrast enhancement preprocessing which is scarce in open literature was also presented. The analysis results show that the target recognition algorithm could be useful for the automatic target recognition using SAR images.

Inductive Learning Algorithm using Rough Set Theory (Rough Set 이론을 이용한 연역학습 알고리즘)

  • 방원철;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.331-337
    • /
    • 1997
  • In this paper we will discuss a type of inductive learning called learning from examples, whose task is to induce general descriptions of concepts from specific instances of these concepts. In many real life situations however new instances can be added to the set of instances. It is first proposed within the framework of rough set theory, for such cases, an algorithm to find minimal set of rules for decision tables without recalculation for overall set of instances. The method of learning presented here is based on a rough set concept proposed by Pawlak[2]. It is shown an algorithm to fund minimal set of rules using reduct change theorems giving criteria for minimum recalculation and an illustrative example.

  • PDF

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

Fingerprint Matching Algorithm using String-Based MHC Detector Set

  • Ko, Kwang-Eun;Cho, Young-Im;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • Fingerprints have been widely used in the biometric authentication because of its performance, uniqueness and universality. Lately, the speed of identification has become a very important aspect in the fingerprint-based security applications. Also, the reliability still remains the main issue in the fingerprint identification. A fast and reliable fingerprint matching algorithm based on the process of the 'self-nonself' discrimination in the biological immune system was proposed. The proposed algorithm is organized by two-matching stages. The 1st matching stage utilized the self-space and MHC detector string set that are generated from the information of the minutiae and the values of the directional field. The 2nd matching stage was made based on the local-structure of the minutiae. The proposed matching algorithm reduces matching time while maintaining the reliability of the matching algorithm.

The Application of Genetic Algorithm for the Identification of Discontinuity Sets (불연속면 군 분류를 위한 유전자알고리즘의 응용)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.47-54
    • /
    • 2005
  • One of the standard procedures of discontinuity survey is the joint set identification from the population of field orientation data. Discontinuity set identification is fundamental to rock engineering tasks such as rock mass classification, discrete element analysis, key block analysis. and discrete fracture network modeling. Conventionally, manual method using contour plot had been widely used for this task, but this method has some short-comings such as yielding subjective identification results, manual operations, and so on. In this study, the method of discontinuity set identification using genetic algorithm was introduced, but slightly modified to handle the orientation data. Finally, based on the genetic algorithm, we developed a FORTRAN program, Genetic Algorithm based Clustering(GAC) and applied it to two different discontinuity data sets. Genetic Algorithm based Clustering(GAC) was proved to be a fast and efficient method for the discontinuity set identification task. In addition, fitness function based on variance showed more efficient performance in finding the optimal number of clusters when compared with Davis - Bouldin index.