H7 EAT (ARG AT A)

Journal of Industrial Technology, Kangwon Natl. Univ.,

;S

Y
rir

sl

s

=
+

JE 2 FE tH

., Al288 BE, 2008.

Korea, No. 28 B, 2008.

N L
2 _‘y
>
(o
!
M
mg{_t’
rid
iz
e
of¥
o)

Vertically Partitioned Block Nested Loop Join on Set—-Valued
Attributes

k-1

=

Whang, Whan-Kyu

Abstract

Set-valued attributes appear in many applications to model complex objects
occurring in the real world. One of the most important operations on set-valued
attributes is the set join, because it provides a various method to express complex

queries.

Currently proposed set join algorithms are based on block nested loop join
in which inverted files are partitioned horizontally into blocks,

Evaluating these

joins are expensive because they generate intermediate partial results severely and
finally obtain the final results after merging partial results.

In this paper,

we present an efficient processing of set join algorithm. We

propose a new set join algorithm that vertically partitions inverted files into blocks,

where each block fits in memory,

and performs block nested loop join without

producing intermediate results. Our experiments show that the vertical bitmap
nested set join algorithm outperforms previously proposed set join algorithms.

FIME FY @ dEHGHE
Keywords :
overlap join

4 H o =3 2 37 z
o 9, HEY 25 ¥ FX 2, JF 29

il

set-valued attributes, inverted file, bitmap, Block Nested Loop Join,

1. Introduction

As database systems are used in various
applications, there is an increase in modeling
real world complex objects with set-valued
attributes [1,2,34]. Using set-valued attributes
can be found in a variety of
domains such as goods purchased by customers,
web pages visited by
contained in documents.

application

users, and kevwords

RS IT o mA, B

Current object-relational DBMSs support
set-valued attributes in a relational table, but
efficient set-valued
In this paper, we study the
efficient processing of set join operators. We
assume that the set-valued attributes are stored
together with other attributes in a single table.
The set join operators include the set
containment join, the set equality join and the
set overlap join. Previous work on set joins has
concentrated on containment join, but real-life
queries in many applications require overlap join.
As an example of a set overlap join, consider
the join of a job table R with a job-hunting

support for joins on
attributes is limited.

- 209 -

S e

gonF G rle et R

table S such that Rorequired_skills N Sskills >
T , where Rrequired_skills stores the required
skills for each job and S.skills stores the skills
of job-hunters. This query returns qualified job
and job-hunter pairs that overlap in at least T
skills for each job. In this paper
concerned with efficient algorithms for efficiently
processing of the set overlap join.

we are

[n the set containment join block-nested loop

8, {e,€, e,8, 8y}

~.

)
.f’-‘

Y287 B, 2008,
Whan- Kyu Whang
) o HEEEERES]
] fees o SRS
Sy ile, B, 0, 8,0, 80,0 ?
5 {8,851} —e.;
5, (o, 08,8 8,} Ry _; 8.5,
5, Te, 008} ::
8] ey entd E
5| teeal S FERnsL
€y
bl
EdN

join method performs well, but in the set
overlap join the method turns out to be bad.
The reason is that join cost increases as the
intermediate result size increases during join
processing. This paper proposes a new vertical
partition-hased block nested loop join for set
overlap join method, which is not required to
generate intermediate results and thus turns out
to be superior compared to previous block nested
loop join.

This paper is organized as follows. Section 2
mtroduces the set index method using inverted
files. Also, it describes the block nested loop
join method, Section 3 proposes the improved
block nested loop join. The performance of the
algorithms 1s evaluated experimentally in Section
4. Finally Section 5 concludes the paper with
future work.

2. Related Work

2.1 Inverted File

The inverted file is
information retrieval [5].
the location of each item in a document and
returns the location when a specific item is
queried. This kind of charactenstics of inverted
file is used as index of set valued attributes.
For each element in the domain D, where (D
assumes the cardinality of domain, the inverted
file 1s created with the record ids of the sets
that contain this element in sorted order. The
inverted file is depicted in Figure 1. If we want
to find tuples that contain the set elements {es,
e el with T=3, we retrieve the rids of e, e,
and en and intersect them. The result of
intersection 1s as follows: $1-2, $3-3, S4-1, Ss-1,
Se-1, Sa-3, Sip-1. The final answer is S; and Ss.

extensively used in
The inverted file stores

Sie {aj ey 0y 0,1 S, B, By S

Fig 1t An Inverted File.

2.2 Block Nested Loop: BNL
2.2.1 Simple Biock Nested Loop

A simple approach to do overlap join using
an inverted file is to join with inverted file for
each tuple. However, limited memory does not
allow the whole size of inverted file to be on
memory. If the inverted file does not fit in
mermory, the I/O cost is severe and in the worst
case it has to be read once for each tuple in RR.
To overcome the problem, the block nested loop
join is proposed [11.
2.2.2 Block Nested Loop Join

Since the cost to scan the whole inverted file
for each tuple from R is expensive we partition
the inverted file into blocks that fit in memory
and scan R for each block. The Block Nested
Loops (BNL) algorithm reads inverted file
sequentially in blocks Bi, Bs.., B, where each
block fits in memory, as in Figure 2

A} fenb o0 el ‘l%
R Lo oy} & '
=1 8
A jiene, e, e 88, gt &m :‘
il Loy 2} o RS }
(0 BT W R el % ~ ;
Ry Teg.25.8) st :_;'*CSE} ;
Ry V85 0083 . Tm ;‘
Rl teeet Lo lSHEEESEEST
Byl olegie, e, et : :;9« ;
By {6 0q gt} 42 re

Fig 2: Partitioning Blocks for Nested toop Join.

- 210 -

GIEA G A ST e EEF), A8 BE, 2008

Vertically Partitioned Block Nested Loop Join on Set-Valued Attributes

Assume that currently block Bi is loaded in
memory, and let Li be the set of elements
whose inverted list is in B Let R; be each tuple
of R and set of elements of R be Ri.. For each
R, three cases may occur.

1. Ri« € D the lists of all elements of Ris
are in Bi. In this case the lists are joined and
the qualifying results are output.

2. Ris N Dy = & the lists of no element in
Ris in Bi. In this case Ri is ignored and we go
to the next tuple.

3R N Dy = @ A Rs € Dy the lists of
some {(but not all) elements in Ri, are in D.
This is the hardest case to handle, since we
may need information from other blocks in order
to verify whether the cardinality of Sina IS more
than threshold T. We count S;s¢ and consider
LWO cases.

1) cardinality of Sine = T° Since this case
satisfies the overlap join condition, the result is
stored in partial result file. For example, if B; is
in memory and Ris is {e;, es ey}, then S3 is
stored in partial result file since it overlaps 3
times.

2) cardinality of Sing < T: Although current
Bi does not satisfy the join condition, it may
satisfy further operation. Hence the form of
<Sirg, N> is stored in temporary files, where n
1s the number of tuples from S that cwTently
match with Rig.

In the above, cases 1 and 2 do not generate
problems because we can immediately get join
results. Although case 3 with T=1 does not
make temporary files, in case with T>1 we
have to store the count in the form of <Riga,;
(Sarid, n1), (Spra, n2),..> in the temporary files.
where nl and n2 represent the number of
occurrences, which is less than the threshold T.

Temporary files and partial result files
resulted from block join results are finally
merged in order to give rise to final results.

3. Proposed Method

In this section, we propose a novel method
that does not generate temporary files during set
overlap join. In previous work, block layout for
inverted file is organized horizontally, but in the
proposed method, one block, which fits in

memory, 1s organized vertically. Block is
represented using bitmap. Since the vertical
bitmap block representation can contain all the
elements in a set, it does not generate
temporary files. Bitmap is generated such that
the bit positions corresponding to the given
elements of the set S are set to 'l’. For
example, if relation cardinality is ten and one of
the lists in the inverted file is <sj, s3, s7>, then
the list is represented by being set to 'l’ in the
first, third and 7th in the bit string with 10 bits.
Bitmap is constructed in the same way for all
the lists in the inverted file.

Directory is organized by storing <e> in the
proposed algorithm, unlike <e, offset> in the
block nested loop join algorithm. Since each list
requires same size of bit string, the information
for the list position is not needed. As a result,
we can save storage space. The reason for
storing <e> is that some elements In the
domain does not appear in the inverted file. For
example, if the cardinality in the domain is ten
and the elements appear only eight in the
inverted file, then it is necessary to represent
the eight elements that appear in the inverted
file. The block organization of bitmap

representation is depicted in Figure 3.

Fig 3: Bitmap Representation of Vertically
Partitioned Blocks for Nested Loop Join.

The bitmap representation, called SBM, is
constructed vertically. The join process in the
proposed algorithm is performed as a block unit
in the same way of block nested loop join
algorithm. Vertical block nested loop join
algorithm is given in <Algorithm 1>,

Algorithm Vertical BNL(R, SBM, T) {

B BN e)%

w52 A28 B3 200,

Whan- Kyu Whang

1- O
initialize partial result file F:
D = read directory in SBNM;

if [Uell - IDI = ID| then { ..., (n
D= Uel - Dy
keep D' in memory,
)
else (2)
keep D in memory;
while there are more block in SBM {
1=1+1
Bi = read next block of SBM that fits
in memory,
Initialize partial result file Pi;
for each tuple tR € R do {
if D is in memory then ... (3)
tR.set = tR.set N Dt
else if D' is in memory then ... (1)

tR.set = tR.set N (Uel - D');
for each bit string s = Bi do {
compare s and tR.set.

if tSrid appears at least T times
then
append <tR.rid, tS.rid> to P (6)

}

unionn all Pi, 1< 1 < n to produce Fi.. (7)

Algorithm 1@ Vertically Partitioned Block Nested
Loop Join.

The algorithm proceeds as follows. First. it
reads the directory of the bitmap and compiies
the the of all
elements in the domain ([Uell) and the number
of the (D).
means that the
the
directory. To save the memory space, we keep

difference between number the

elements stored in the directory
The difference represented by D’
elements are in the domain but not in
1 memory the smaller one between D and D'.
Next, block 1s read sequentially from bitmap file
SBM. Each tuple in R is joined with each block.
In this process, among the elements set of R
(tiwer). the elements that are not included in the
bitmap are excluded (3)-(4). For the elements of
each tuple in R, we count the number of the bit
that is set to ‘1"
this number is larger or equal to the threshold,

the

in the vertical bitmap of . If

pair <tgnad tund> 18 stored in a partial

S+
[S-)

temporary result lile (5)=(6). After join operation
of all the blocks, the final result is obtained by
union of partial result (7).

4. Performance Results

The experiments were conducted under Linux
kernel 2615-1 with Pentum 4 1.8 GHz
processor and 512 MB memory.

4.1 Data Generalion

Data sets used were
generated synthetically. The parameters of input
data sets are the average set size of each tuple,
the domain size of and a
ratio. The DI
represented by the set of integers ranged from !

in the experiments

set elements,

correlation domain size is
to IDI. Set values represented by integers can
simplify real applications in terms of reducing

the space requirements of the tuples and the

comparison costs. Each tuple has a set
composed of integers picked from domain. In
order for each tuple not to have skewed

elements in a specific range, the domain is split

into 50 equal-sized sub-domains. Elements in

the same sub-domain represent corrclated

sub-clements.

The correlation ratio is used to represent
the number of elements in a set which are
correlated. The elements of a set in a tuple are
generated as follows. For each tuple, we pick a
sub-domain randomly from the 50 sub-domains.
Then the set elements are chosen f{rom this
sub-domain as much as the correlation ratio and
the rest of them are randomly chosen from the
remaining 49 sub-domains. For example, if the
domain size is 1.000, the average set size is 20,
and the 1094,
clements, which are the correlation ratio of the
set size. are chosen from a randomly chosen

correlation ratio is then 2

sub-domain out of the 50 sub-domains, and 18
randomly the
remaining 49 sub-domains. In the experiments,
the relations R and S were generated to have
the same cardinality, the domain size DIl is set
to 1,000, and the correlation is set to 10°.

elements are chosen from

42 Results Analysis

In Experiment 1, we compare the running

time of each algorithm when we increase the

ol el gRla ki (e EET e 8 Q) A28Y BE. 2008

Vertically Partitioned Block Nested Loop Join on Set- Valued Attributes

relation cardinality. The experimental settings
are as follows: the average set cardinality is set
to 40, the relation cardinality ranges from IK to
10K, the memory buffer is set to 10% of the
size of a relation on disk, and the threshold is
set to 3. Experiment 1 shows that the proposed
vertical BNL outperforms BNL as much as 2
orders of magnitude. This is due to the fact that
the vertical BNL does not require any additional
operations from join results. On the other hand,
in BNL the inverted file size increases when the
relation size increases. Thus the block size
increases, the temporary files become increase
and the I/O cost increases.

100

g ‘ 2
8

Eoo /
i

" ¥
£a .

a /

£ 20

o

2 4 8 10
Number of Tupies{(Size of Element Sets:40)

wip BHL —~ ER_BM

Experiment 1 Effect of Relation Size.

Experiment 2 compares the response time
under various threshold values. The relation
cardinality is set to 10,000, the number of set
elements is set to 40, and the memory buffer is
set to 10% of the size of a relation.

]
=

et

3 8 8

Response Time{sec)

N
o

1 2 3 4 5
Threshald

b~ B =~ ER_BHL

Experiment 2: Effect of Threshoid.

The figure shows that the running time of
BNL increases as the threshold values are
increased. The reason is that as the threshold
values increascs. temporary files become large

due to increase of the condition range. On the
other hand, since the vertical BNL does not
produce the temporary files, it is not affected
due to the varying of the threshold values.

Experiment 3 compares the response time
under various elements set size. The
experimental settings are same as Experiment 2
with threshold being set to 3. Experiment 3
shows that the proposed vertical BNL
outperforms BNL as much as 3 to 4 orders of
magnitude.

/Z

e

2 0 40 S0 60
Size of Element Sets

i BHL ~g- ER_EH

Experiment 3: Effect of Element Set Size.
5. Conclusions and Future Work

In the previous study, BNL outperforms a
signature-based approach for set-valued
containment joins, typically by an order of
magnitude. However, BNL does not show a
good performance on set-valued overlap joins. In
this paper, we have proposed the vertical BNL
method to reduce the intermediate result sizes
resulted from the join processing of BNL. The
vertical BNL method which produces bit-mapped
representation of the inverted file and a vertical
representation of blocks, reduces the size of the
previous inverted file approach and does not
produce intermediate results due to the vertical
bit-map representation. In consequence, we can
achieve a good performance on the vertical BNL
method compared to the previously proposed
method.

In the future, we plan to study the effects
according to the varying size of domain in set
Another study is to improve
performance on compression of bit map and on
indexing. We plan to study the efficient
processing of various set join predicates such as

elements.

Ml AT SR A 7))tk R, AORE BEL 2008,

& O

Whan-Kyu Whang

containment and equality on set-valued

attributes.
* 12 s
[1] Nikos Mamoulis , “Efficient Processing of

Joins on Set-valued Attributes”, In Proc
2003 ACM SIGMQOD In Conf Management
of data, California, pp. 157-168, June, 2003.

[2] Mikolaj Morzy, Tadeusz Morzy, Alexandros
Nanopoulos and Yannis Manolopoulos,
“Hierachical Bitmap Index: An Efficient and
Scalable Indexing Technique for Set-Valued
Attrubutes”, L. Kalinichenko et al. (Eds) :
ADBIS 2003, LNCS 2798, pp. 236-252, 2003.

[3] Sunita Sarawagi and Alok Kirpal, “Efficient
set joins on similarity predicates”, In Proc.
SIGAIOD 2004 In Conf Management of
data, France, pp. 743-754, June 2004.

[4] Yangjun Chen and Yibin Chen, “On the
Sign- ature Tree Construction and
Analysis”, IEEE Transactions on Knowledge
and Data FEngineering, Vol 18, No. 9, pp.
1207-1224, 2006.

[5] J. Zobel, A. Moffat, and K. Ramamohanarao,
“Inverted Files versus Signature Files for
Text Indexing,” TODS. 23(4), pp. 453-490,
1998.

- 214 -

