• 제목/요약/키워드: servo control system

검색결과 1,334건 처리시간 0.032초

천정크레인 부하의 위치 및 흔들림 제어 (Position and swing angle control for loads of overhead cranes)

  • 이호훈;조성근
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

압력제어용 DDV를 이용한 전기.유압 서보시스템의 식별 및 제어 (Identification and Control of a Electro-Hydraulic Servo System Using a Direct Drive Valve)

  • 이창돈;이상훈;곽동훈;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.124-130
    • /
    • 2003
  • The electro-hydraulic servo system with a servo valve is applied widely in force control. However, the composition of control system using a servo valve is difficult due to nonlinearities in the servo valve, such as square-root terms in flow equation. The electro-hydraulic servo system using a DDV(Direct Drive Valve) instead of a servo valve was proposed and it's characteristics was estimated. The DDV and whole system are modelled by parameter identification using the input-and-output data, then the models are verified by the comparison of simulation with experiment. Also, the state feedback controller has been designed based on this model, then the performance of the electro-hydraulic force servo system using a DDV is evaluated by simulation and experimental results.

강인한 디지털 최적모델 추종형 서보시스템의 구성과 그 적용 (Design and its Application of Robust Degital Optimal Model Following Servo System)

  • 이양우;김정택;황창선
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1186-1192
    • /
    • 1994
  • This paper presents an algorithm to design a robust digital model following servo control system in which optimal linear quadratic regulator problem is used to design the control system that make the step/ramp response of the plant kept close to a specified ideal step/ramp response of the model. The quadratic criterion function for a continuous system is used to design the robust digital servo control system. The feasibility of the design technique is shown by the simulation and the proposed method is applied to the speed control of DC servo motor.

  • PDF

SIMTool을 이용한 AC 서보 시스템의 속도 및 위치제어 (Speed and Position Control of AC Servo System using SIMTool)

  • 지준근;임영하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.184-186
    • /
    • 2003
  • In this paper, speed and Position control of AC servo system using SIMTool of Realgain company is introduced. "AC Servo-Designer"system, including CEMTool/SIMTool S/W, RG-DSPIO board, AC servo driver and AUTOTool program, is used in this research. "AC Servo-Designer"system can use SIMTool blocks to Because design and implement various controller in short time, speed and position controller of AC servo system are easily designer and implemented according to control objectives.

  • PDF

다중 팔렛 시스템에 사용되는 서보 모터의 제어에 관한 연구 (A Study on Servo Motor Control in Multi Pallet System)

  • 오현우
    • 대한임베디드공학회논문지
    • /
    • 제14권6호
    • /
    • pp.339-346
    • /
    • 2019
  • Multi-axis servo systems are widely used in various fields such as industiral systems for improving production efficiency, robotics and complex systems where many mechanical devices and sensor systems are connected. Such a servo system requires that the servo control technique to realize the synchronization of the drive shaft in the steady state and transient conditions and to control so as to follow the target track in order to improve product precision and production efficiency. In addition, embedded type hardware is required for smooth control of the entire multi-axis system. Therefore, this paper uses hardware based on FPGA which is widely used in digital signal processing field and various control system because hardware design change is easy and parallel processing is possible. In addition, Labview based servo motor control program was studied that can control the servo motor by ensuring the performance and flexibility of the FPGA and follow the target trajectory according to various speed processing and accurate timing synchronization.

공압서보시스템에 의한 미세 간극제어 시스템 설계 (Fine Gap Control Using Pneumatic Servo System)

  • 김동환;김영진;정대화
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.45-56
    • /
    • 2002
  • A pneumatic servo system requiring a fine gap control in a photo-electric sensor which is used for a LCD array detection device is introduced. The gap controlled by the pneumatic servo system remains within around 50~80 ${\mu}{\textrm}{m}$, and the system possesses an effect to eliminate undesirable particles on the LCD plate by blowing air out. The air flow rate is initially controlled by a servo valve and expanded by a booster valve, thus the controlled air pressure contributes to maintaining an appropriate gap between the LCD plate and photo-electric sensor An air floating plate of two degrees of freedom is designed and fabricated, and a fine tilting motion control is also implemented by assigning different gap commands. The pressure control and direct gap control are proposed, and each performance is verified experimentally.

유압 서어보 제어 시스템의 설계 변수 결정의 실험적 고찰 (The Experimental Parameter Identification of Electro-Hydraulic Servo Control System)

  • 김영대;강석종;이관섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.957-961
    • /
    • 1991
  • The parameters of electro-hydraulic servo system are closely dependent on the variation of system characteristics. Especially the parameter sensitivity is incleased in the servo system with heavy load and wide operating range. This paper shows the effect of parameter variation and the experimental parameter values of high power servo system.

  • PDF

Controller Design for a Nozzle-flapper Type Servo Valve with Electric Position Sensor

  • Istanto, Iwan;Lee, Ill-yeong;Huh, Jun-young;Lee, Hyun-cheol
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.29-35
    • /
    • 2019
  • The control performance of hydraulic systems is basically influenced by the performance of electrohydraulic servo valve incorporated in a hydraulic control system. In this study, a control design was proposed to improve the control performance of a servo valve with a non-contact eddy current type position sensor. A mathematical model for the valve was obtained through an experimental identification process. A PI-D control together with a feedforward (FF) control was applied to the valve. To further improve the dynamic response of the servo valve, an input shaping filter (ISF) was incorporated into the valve control system. Finally, the effectiveness of the proposed control system was verified experimentally.

갠트리 크레인 스프레더의 웨치제어에 관한 연구 (The Study on Position Control of Gantry Crane Spreader)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.307-307
    • /
    • 2000
  • The swing motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to design implementable stabilizing controllers that minimize the swing motion of spreader in precise position control. The dynamic equations related to trolley, rope, and spreader are derived. For constitute a similar actual system, we introduced a conception of spring and damper in the connector. It is located between the trolley and link that is used in stead of rope. We derived dynamic equation by appliance that friction and external disturbance are occurred to the connector. We constituted of position servo system and velocity servo system for the control of position and velocity of the trolley and constituted of lag compensator system for the control of sway of the spreader. And we will show an effect of the proposed system in this research finally.

  • PDF

$\delta$-연산자를 이용한 강인한 모델 추종형 서보 제어 시스템의 구성에 관한연구 (A Design on Robust Model Following Servo System Using $\delta$--Operator)

  • 김정택;황현준
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2000
  • In the fast sampling limit the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF