• Title/Summary/Keyword: serviceability design

Search Result 403, Processing Time 0.029 seconds

Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가)

  • Jang, Seung-Yup;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.48-61
    • /
    • 2012
  • It is of great importance to assure the running safety, ride comfort and serviceability in designing the floating slab track for mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety, ride comfort and serviceability, and then, the behavior of train and track at the floating slab track including the transition zone to the conventional concrete slab track according to several main design variables such as system natural frequency, arrangement of spring at transition, spacing of spring isolators, damping ratio and train speed, using the dynamic analysis technique considering the train-track interaction. The results of this study demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the dynamic response such as wheel-rail interaction force, rail bending stress and rail uplift force. Hence, it is efficient to decrease the spacing of springs or to increase the spring constants at the transition to obtain the running safety and serviceability. On the other hand, the vehicle body acceleration as a measure of ride comfort is little affected by the discontinuity of the stiffness at the transition, but by the system tuning frequency; thus, to obtain the ride comfort, it is of great significance to select the appropriate system tuning frequency. In addition, the effects of damping ratio, spacing of springs and train speed on the dynamic behavior of the system have been discussed.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

Design Aids for a Reinforced Concrete Beam with the Minimum Cost Concept

  • Park, Dalsoo;Ahn, Jeehyun;Lee, Chadon
    • Architectural research
    • /
    • v.1 no.1
    • /
    • pp.55-61
    • /
    • 1999
  • In reinforced concrete design, structural member sizes and amount of reinforcing steel areas are usually selected based on the structural designers' experience. Most existing charts provided for the design of reinforced concrete structural members were developed mainly based on force equilibrium conditions and some serviceability criteria. Sections selected from these charts may not result in an economic solution in terms of material costs as well as construction costs. Practical design aids are developed and suggested in this study for the economical design of reinforced concrete beam under flexural loading. With the beam width fixed, the depth of a beam, positive steel areas and negative steel areas are found from Khun-Tucker necessary conditions with Lagrangian multipliers to minimize the sectional cost of a beam. The developed design aids might be useful in selecting optimum reinforced concrete beam sections. Theoretical derivations and use of the developed design aids are described in this paper.

  • PDF

Optimum Life Cycle Cost Design of High-Speed Railway Steel Bridges (고속철도 강교량의 총기대비용 최적설계)

  • 조효남;민대홍;조준석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, an optimum design model for minimizing the life-cycle cost (LCC) of high-speed railway steel bridges is proposed The point is that it takes into account service life process as a whole, and thus the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs, expected strength failure costs and expected serviceability failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. By processing the optimum LCC design the effective and rational basis is proposed for calculating the total LCC and the sensitivity analysis of LCC is peformed. Based on a numerical example, it may be positively stated that the optimum LCC design of high-speed railway steel bridges proposed in this study provides a lot more rational and economical design, and thus the proposed approach will expedite the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

  • Kim, Sung-Jae;Kim, Jang-Ho Jay;Yi, Seong-Tae;Noor, Norhazilan Bin Md;Kim, Sung-Chul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.1-17
    • /
    • 2016
  • Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies have been performed to develop less expensive and very safe precast prestressed concrete (PSC) curved girder. One method of reducing the construction cost of a PSC curved girder is to use a reusable formwork that can easily be adjusted to change the curvature and length of a girder. A reusable and curvature/dimension adjustable formwork called Multi-tasking formwork is developed for constructing efficient precast PSC curved girders. With the Multi-tasking formwork, two 40 m precast PSC box girders with different curvatures were constructed to build a two-girder curved bridge for a static flexural test to evaluate its safety and serviceability performance. The static flexural test results showed that the initial cracking load was 1400 kN, exceeding the design cracking load of 450 kN. Also, the code allowed deflection of 50 mm occurred at a load of 1800 kN, verifying the safety and serviceability of the precast PSC curved bridge constructed using the multi-tasking formwork.

Time-dependent Parametric Analyses of PSC Composite Girders for Serviceability Design (사용성 설계를 위한 PSC 합성거더교의 시간의존적 변수해석)

  • Youn, Seok-Goo;Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.823-832
    • /
    • 2006
  • To ensure the serviceability requirements of PSC composite girder bridges, it is essential to predict the stresses and deformations of the structure under service load conditions. Stresses and deformations vary continuously with time due to the effects of creep and shrinkage of concrete and relaxation of prestressing steel. The importance of these time-dependent effects is much more pronounced in precast prestressed concrete structures built in stages than in those constructed in one operation. In this paper, time-dependent analyses for PSC composite bridges using 30m standard girders have been conducted considering with the variation of the times of introducing initial prestressing forces and casting concrete. A computer program has been developed for the time-dependent analysis of simple or continuous PSC composite girders and parametric studies are conducted. Based on the numerical results, it is investigated the long-term behaviors of PSC composite girder bridges and discussed the limitations of the current codes for the prestress loss.

Optimum Design of Steel Box Girder Considering Dynamic Characteristics of LRT with Rubber Wheel (경량전철 고무차륜 AGT 하중의 동적특성을 고려한 강박스거더의 단면 최적설계)

  • Lee Hee-Up;Lee Jun S.;Bang Choon-seok;Choi Il-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1197-1204
    • /
    • 2004
  • The metropolitan cities and operation companies of urban transit railway are driving to construct the LRT(light rail transit) system because of the advantage of construction cost and environmental serviceability. This study suggests the optimal design method of steel box girder considering dynamic characteristics of LRT with rubber wheel. The behavior and design constraints are formulated based on the structural design criteria for LRT. Genetic algorithm is applied to the minimum weight design of structural system. A typical example is solved to illustrate the applicability of the proposed minimization algorithm. From the results of application example, the optimum design of steel box girder is successfully accomplished. Therefore, this system can act as a consultant to assist novice designers in the design of steel box girder for LRT with rubber wheel.

  • PDF

Reliability Analysis on GFRP Bridge Decks for Target Reliability (목표 신뢰성에 대한 GFRP 교량 바닥판의 구조 신뢰성 해석)

  • Kim, Sang-Jin;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Bridge decks are one of the main structural components that are most suitable for utilizing the advantages of FRP materials due to the high strength weight ratio of FRP materials. Design codes for the design of FRP bridge decks should be established to apply FRP materials for bridge decks effectively. At present, design codes are relatively well established for the use of FRP materials as reinforcements in concrete structures. However, design codes have not yet been provided for the structures made of FRP as a main construction material. In this study, for the purpose of preparing design code provisions, reliability analyses were performed to evaluate target level of safety and serviceability on GFRP decks. Based on the results, several guidelines for the development of design codes are suggested.

  • PDF

Evaluation of Design Compatibility for Lightweight Soundproof Tunnels using Pipe Truss Beams (파이프 트러스 빔을 이용한 경량방음터널의 설계적합성 평가)

  • Ahn, Dong-Wook;Choi, Sung-Joon;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In this paper, the structural characteristics of a lightweight soundproof tunnel to reduce the dead load imposed on the bridge are investigated. Subsequently, the design procedure of soundproof tunnel structures is reviewed and a design practice for the lightweight soundproof tunnel is carried out according to the reviewed procedure. Next, design compatibility for the lightweight soundproof tunnel is verified through a detailed finite element analysis. The result for evaluation of design compatibility shows that the lightweight soundproof tunnel has structural safety in structural members, welding zones and foundation parts. It is also confirmed that serviceability and buckling safety is excellent.

The Development of Graphic User Interface Program for Optimum Design of RC Continuous Beam (RC 연속보의 최적설계를 위한 GUI 프로그램 개발)

  • 한상훈;조홍동;박중열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.245-250
    • /
    • 1999
  • In this study, the development of graphic user interface(GUI) program for optimum design of RC continuous beam is dealt. Optimum design problem that satisfies strength, serviceability, durability and geometrical conditions is formulated as a non-linear programming problem(NLP) in which the objective function as well as the constraints are highly non-linear on design variables such as cross sectional dimensions and steel ratio. Optimum design problem is solved by NLP techniques namely, sequential linear programming(SLP), sequential convex programming(SCP). Numerical examples of R.C. continuous beam using GUI system are given to show usefulness of GUI system for practical design work and efficiency of algorithm for the NLP techniques.

  • PDF