• Title/Summary/Keyword: service robots

Search Result 289, Processing Time 0.285 seconds

COSMO - low cost force/moment sensor for robot teaching (COSMO - 로봇교시를 위한 저가형 6축 힘/모멘트 센서)

  • ;Choi, Myoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1621-1623
    • /
    • 1997
  • Use of teaching pendant is the most widespread and economical way to teach desired motion to robots. It is also very primitive,time consuming and ineffective way of teaching which has not changed since the early days of robot. In order to reduce the teaching effor, a new efficient form of teaching is needed. Also, the recent robotics research trend into service robots such as home robot, nurse robot and medical robot calls for a new teaching method which is both easy and inexpensive. In this paper, the design and operation principle of a low cost force/moment sensor is presented. The proposed sensor architecture is so simple and inexpensive that it opens the prospect for a new paradigm of robot teaching which is easy and efficinet. Other prospective areas of application are tele-manipulation of robots wher it can be used in master arm, and virtual environment where it can be used as an user input device.

  • PDF

Utilization of the robot's field of fire prevention research (로봇의 소방방재분야 활용방안 연구)

  • Lee, Jeong-Il
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.471-484
    • /
    • 2013
  • Large and complicated firefighting environment is accelerating in the early activities in the field of fire officials at the time limit situation leads to people's lives and property damage, as well as the loss of the Fire Service. Therefore, the state-of-the-art technology that can respond to rapidly changing fire environment urgently in the field of fire fighting have been introduced should be utilized. These intelligent firefighting robots build daegukmin firefighting safety net that can be used when. Other advanced technology industries, the most effective ways that can be introduced into the firefighting shall be provided in the current situation of the industry's initial firefighting robots.

  • PDF

An Embedded Solution for Fast Navigation and Precise Positioning of Indoor Mobile Robots by Floor Features (바닥 특징점을 사용하는 실내용 정밀 고속 자율 주행 로봇을 위한 싱글보드 컴퓨터 솔루션)

  • Kim, Yong Nyeon;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.293-300
    • /
    • 2019
  • In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.

Validation of Cloud Robotics System in 5G MEC for Remote Execution of Robot Engines (5G MEC 기반 로봇 엔진 원격 구동을 위한 클라우드 로보틱스 시스템 구성 및 실증)

  • Gu, Sewan;Kang, Sungkyu;Jeong, Wonhong;Moon, Hyungil;Yang, Hyunseok;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2022
  • We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.

On Safety Improvement through Process Establishment for SOTIF Application of Autonomous Driving Logistics Robot

  • Choi, Kyoung Lak;Kim, Min Joong;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.209-218
    • /
    • 2022
  • Today, with the development of the Internet and mobile technology, consumers' purchasing patterns have shifted from offline to online. In addition, due to the recent COVID-19, online purchases have significantly increased, and accordingly, the courier industry for logistics delivery has also grown significantly. Various logistics robots are being operated in many industrial and can reduce the labor intensity and physical and mental fatigue of workers. However, if the logistics robot does not properly recognize the people or environment around it, it can lead to a serious accident. We conducted that how logistics robots can perform safe work in a working environment such as a logistics warehouse through the application of ISO/DIS 21448 (SOTIF) to autonomous logistics transport robots. This result is expected to contribute to the operation of unmanned logistics warehouses using AGV.

User perception of medical service robots in hospital wards: a cross-sectional study

  • Lee, Jung Hwan;Lee, Jae Meen;Hwang, Jaehyun;Park, Joo Young;Kim, Mijeong;Kim, Dong Hwan;Lee, Jae Il;Nam, Kyoung Hyup;Han, In Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.116-123
    • /
    • 2022
  • Background: Recently, there have been various developments in medical service robots (MSRs). However, few studies have examined the perceptions of those who use it. The purpose of this study is to identify user perceptions of MSRs. Methods: We conducted a survey of 320 patients, doctors, and nurses. The contents of the survey were organized as follows: external appearances, perceptions, expected utilization, possible safety accidents, and awareness of their responsibilities. Statistical analyses were performed using t-test, chi-square test, and analysis of variance. Results: The most preferred appearance was the animal type, with a screen. The overall average score of positive questions was 3.64±0.98 of 5 points and that of negative questions was 3.24±0.99. Thus, the results revealed that the participants had positive perceptions of MSR. The overall average of all expected utilization was 4.05±0.84. The most expected utilization was to guide hospital facilities. The most worrisome accident was exposure to personal information. Moreover, participants thought that the overall responsibility of the robot user (hospital) was greater than that of the robot manufacturer in the case of safety accidents. Conclusion: The perceptions of MSRs used in hospital wards were positive, and the overall expected utilization was high. It is necessary to recognize safety accidents for such robots, and sufficient attention is required when developing and manufacturing robots.

Deep Level Situation Understanding for Casual Communication in Humans-Robots Interaction

  • Tang, Yongkang;Dong, Fangyan;Yoichi, Yamazaki;Shibata, Takanori;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • A concept of Deep Level Situation Understanding is proposed to realize human-like natural communication (called casual communication) among multi-agent (e.g., humans and robots/machines), where the deep level situation understanding consists of surface level understanding (such as gesture/posture understanding, facial expression understanding, speech/voice understanding), emotion understanding, intention understanding, and atmosphere understanding by applying customized knowledge of each agent and by taking considerations of thoughtfulness. The proposal aims to reduce burden of humans in humans-robots interaction, so as to realize harmonious communication by excluding unnecessary troubles or misunderstandings among agents, and finally helps to create a peaceful, happy, and prosperous humans-robots society. A simulated experiment is carried out to validate the deep level situation understanding system on a scenario where meeting-room reservation is done between a human employee and a secretary-robot. The proposed deep level situation understanding system aims to be applied in service robot systems for smoothing the communication and avoiding misunderstanding among agents.

Balancing Control Algorithm for a Single-Wheeled Mobile Robot (외륜 이동로봇의 균형제어 알고리즘)

  • Lee, Hyun Tak;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

A Case Study on Using Robot at the Library: Focusing on the case of National Library of Korea (도서관에서 로봇 활용에 대한 사례 연구: 국립중앙도서관을 중심으로)

  • Kim, Kyung Cheol
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.4
    • /
    • pp.61-80
    • /
    • 2020
  • This study attempted to propose various application and function improvement plans by analyzing robots operated in the libraries. Thus, the types and functions of robots operated by 16 domestic and foreign libraries were examined. Most of them were used for Librarian Assistance (Book Inventory, Book Delivery, Etc.) and User Service (Facility Guide, Search Aids, Etc.). Besides, the introduction of robots in the National Library of Korea (NLK) and their functional limitations were analyzed. As a result, this study presented the need to develop additional functions for the robot, develop quarantine and security robots, the need for a national-level policy for robot diffusion, and build a robot ecosystem.

Implementation of Intelligent and Human-Friendly Home Service Robot (인간 친화적인 가정용 지능형 서비스 로봇 구현)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Kim, Jong-Soo;Jeo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.720-725
    • /
    • 2004
  • Robot systems have applied to manufacturing or industrial field for reducing the need for human presence in dangerous and/or repetitive tasks. However, robot applications are transformed from industrial field to human life in recent tendency Nowadays, final goal of robot is to make a intelligent robot that can understand what human say and learn by itself and have internal emotion. For example Home service robots are able to provice functions such as security, housework, entertainment, education and secretary To provide various functions, home robots need to recognize human`s requirement and environment, and it is indispensable to use artificial intelligence technology for implementation of home robots. In this paper, implemented robot system takes data from several sensors and fuses the data to recognize environment information. Also, it can select a proper behavior for environment using soft computing method. Each behavior is composed with intuitive motion and sound in order to let human realize robot behavior well.