• Title/Summary/Keyword: serum lactate concentration

Search Result 71, Processing Time 0.022 seconds

Nasal and Pulmonary Toxicity of Titanium Dioxide Nanoparticles in Rats

  • Kwon, Soonjin;Yang, Young-Su;Yang, Hyo-Seon;Lee, Jinsoo;Kang, Min-Sung;Lee, Byoung-Seok;Lee, Kyuhong;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.217-224
    • /
    • 2012
  • In recent decades, titanium dioxide ($TiO_2$) nanoparticles have been used in various applications, including paints, coatings, and food. However, data are lacking on the toxicological aspects associated with their use. The aim of this study was to assess the inhalation toxicity of $TiO_2$ nanoparticles in rats by using inhalation exposure. Male Wistar rats were exposed to $TiO_2$ nanoparticles for 2 weeks (6 hr/day, 5 days/week) at a mean mass concentration of $11.39{\pm}0.31mg/m^3$. We performed time-course necropsies at 1, 7, and 15 days after exposure. Lung inflammation and injury were assessed on the basis of the total and individual cell counts in bronchoalveolar lavage fluid (BALF), and by biochemical assays, including an assay for lactate dehydrogenase (LDH). Furthermore, histopathological examination was performed to investigate the lungs and nasal cavity of rats. There were no statistically significant changes in the number of BALF cells, results of biochemical assays of BALF and serum, and results of cytokine analysis. However, we did observe histopathological changes in the nasal cavity tissue. Lesions were observed at post-exposure days 1 and 7, which resolved at post-exposure day 15. We also calculated the actual amounts of $TiO_2$ nanoparticles inhaled by the rats. The results showed that the degree of toxicity induced by $TiO_2$ nanoparticles correlated with the delivered quantities. In particular, exposure to small particles with a size of approximately 20 nm resulted in toxicity, even if the total particle number was relatively low.

Effects of cardiac biological activities on low-intensity physical training in doxorubicin-induced cardiotoxicity rat models

  • Ki, Yeong-Kye;Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 2014
  • Objective: In the present study, we investigated the protective effects of low-intensity treadmill training in doxorubicin-induced cardiotoxicity rat models. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into four groups. The normal group included non-cardiotoxicity normal control (n=10), the control group included non-treadmill training after doxorubicin-induced cardiotoxicity (n=10), the experimental group I included low-intensity treadmill training (3 m/min) after doxorubicin-induced cardiotoxicity (n=10), and the experimental group II included low-intensity treadmill training (8 m/min) after doxorubicin-induced cardiotoxicity (n=10). Rats in the treadmill training group underwent treadmill training, which began at 2 weeks after first intraperitoneal injection. We determined the body weight change for each rat on days 1 and 21. Biochemical markers (lactate dehydrogenase [LDH], creatine kinase [CK], glutathion, aspartate transaminase [AST], and alanine transaminase [ALT]) concentration in the serum change of rats from all four groups was examined at the end of the experiment. Results: The results showed that the experimental group I and II showed a significant increase in body weight as compared with that of the control group (p<0.05). We observed that the biochemical markers (LDH, CK, glutathion, AST, and ALT) were improved in the experimental group I than the experimental group II (p<0.05). There was no difference between the experimental groups. Conclusions: In conclusion, our data suggest that low-intensity treadmill training applied after doxorubicin treatment protects against cardiotoxicity following treatment, possibly by enhancing antioxidant defenses and inhibiting cardiac muscle cell apoptosis.

Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats

  • Kim, Yong-Soon;Lim, Cheol-Hong;Shin, Seo-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.239-253
    • /
    • 2017
  • Neodymium is a future-oriented material due to its unique properties, and its use is increasing in various industrial fields worldwide. However, the toxicity caused by repeated exposure to this metal has not been studied in detail thus far. The present study was carried out to investigate the potential inhalation toxicity of nano-sized neodymium oxide ($Nd_2O_3$) following a 28-day repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed to nano-sized $Nd_2O_3-containing$ aerosols via a nose-only inhalation system at doses of $0mg/m^3$, $0.5mg/m^3$, $2.5mg/m^3$, and $10mg/m^3$ for 6 hr/day, 5 days/week over a 28-day period, followed by a 28-day recovery period. During the experimental period, clinical signs, body weight, hematologic parameters, serum biochemical parameters, necropsy findings, organ weight, and histopathological findings were examined; neodymium distribution in the major organs and blood, bronchoalveolar lavage fluid (BALF), and oxidative stress in lung tissues were analyzed. Most of the neodymium was found to be deposited in lung tissues, showing a dose-dependent relationship. Infiltration of inflammatory cells and pulmonary alveolar proteinosis (PAP) were the main observations of lung histopathology. Infiltration of inflammatory cells was observed in the $2.5mg/m^3$ and higher dose treatment groups. PAP was observed in all treatment groups accompanied by an increase in lung weight, but was observed to a lesser extent in the $0.5mg/m^3$ treatment group. In BALF analysis, total cell counts, including macrophages and neutrophils, lactate dehydrogenase, albumin, interleukin-6, and tumor necrosis factor-alpha, increased significantly in all treatment groups. After a 4-week recovery period, these changes were generally reversed in the $0.5mg/m^3$ group, but were exacerbated in the $10mg/m^3$ group. The lowest-observed-adverse-effect concentration of nano-sized $Nd_2O_3$ was determined to be $0.5mg/m^3$, and the target organ was determined to be the lung, under the present experimental conditions in male rats.

Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction

  • Hwang, Hyejung;Mizuno, Sahiro;Kasai, Nobukazu;Kojima, Chihiro;Sumi, Daichi;Hayashi, Nanako;Goto, Kazushige
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • [Purpose] The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (${\dot{V}}O_2$ max) or 40% ${\dot{V}}O_2$ max) on muscle oxygenation, energy metabolism, and endocrine responses. [Methods] Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% ${\dot{V}}O_2$ max without BFR (NBFR40), (2) endurance exercise at 25% ${\dot{V}}O_2$ max with BFR (BFR25), and (3) endurance exercise at 40% ${\dot{V}}O_2$ max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise. [Results] Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40. [Conclusion] Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.

Intramuscular Administration of Zinc Metallothionein to Preslaughter Stressed Pigs Improves Anti-oxidative Status and Pork Quality

  • Li, L.L.;Hou, Z.P.;Yin, Y.L.;Liu, Y.H.;Hou, D.X.;Zhang, B.;Wu, G.Y.;Kim, S.W.;Fan, M.Z.;Yang, C.B.;Kong, X.F.;Tang, Z.R.;Peng, H.Z.;Deng, D.;Deng, Z.Y.;Xie, M.Y.;Xiong, H.;Kang, P.;Wang, S.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.761-767
    • /
    • 2007
  • This study was conducted to determine the effects of exogenous zinc-metallothionein (Zn-MT) on anti-oxidative function and pork quality. After feeding a corn-soybean meal-based diet for two weeks, 48 pigs ($Duroc{\times}Landrace{\times}Chinese\;Black Pig$) were assigned randomly to four groups. Pigs in Group 1 were maintained under non-stress conditions, whereas pigs in Groups 2, 3 and 4 were aggressively handled for 25 min to produce stress. Pigs in Groups 1, 2, 3, and 4 received intramuscular administration of saline (control group; CON), 0 (negative control group; NCON), 0.8 (low dose group; LOW), and 1.6 (high dose group; HIGH) mg rabbit liver Zn-MT per kg body weight, respectively. Pigs were slaughtered at 3 and 6 h post-injection. Zn-MT treatment increased (p<0.05) the activities of superoxide dismutase (SOD) and glutathione-peroxidase (GSH-PX) while decreasing the concentration of malondialdehyde (MDA) in liver. These responses were greater (p<0.05) at 6 h than at 3 h post Zn-MT injection. Zn-MT treatment increased (p<0.05) hepatic SOD mRNA levels in a time and dose-dependent manner and decreased (p<0.05) serum glutamate-pyruvate transaminase and lactate dehydrogenase activities (indicators of tissue integrity). Zn-MT administration decreased (p<0.05) lactate concentration and increased (p<0.05) pH and water-holding capacity in the longissimus thorasis meat. Collectively, our results indicate that intramuscular administration of Zn-MT to pre-slaughter stressed pigs improved tissue anti-oxidative ability and meat quality.

The Preventive Effects of Paeoniae Radix Extract against LPS-induced Acute Hepatotoxicity (LPS로 유도된 급성 간독성에 대한 백작약 추출물의 보호 효과)

  • Kim, In-Deok;Kwon, Ryun-Hee;Heo, Ye-Young;Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Jong-Myung;Ha, Bae-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.222-226
    • /
    • 2008
  • The purpose of this study was to investigate the preventive effects of Paeoniae Radix Extract(PRE) against the acute hepatotoxicity-inducing lipopolysaccharide(LPS) in the liver. PRE of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1.5 ml/kg for 20 days. On day 21, 5 mg/kg of LPS dissolved in saline was injected 4 hours before anesthetization. We examined the levels of glutamate oxaloacetate transaminase(GOT), glutamate pyruvate transaminase(GPT), lactate dehydrogenase(LDH) in serum of rats, superoxide dismutase(SOD) in mitochondrial fractions, and malondialdehyde(MDA), catalase(CAT), glutathione peroxidase(GPx) in liver homogenates. LPS-treatment markedly increased the levels of GOT, GPT, LDH and MDA, and significantly decreased those of SOD, CAT and GPx. But PRE-pretreatment decreased the levels of GOT, GPT, LDH and MDA, by 59.7%, 43.6%, 59.6% and 63.5%, respectively and increased those of SOD, CAT and GPx, by 85.5%, 57.8% and 62.9%, respectively. These results showed that the PRE had the preventive effects against the acute hepatotoxicity-inducing LPS in the liver.

Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model

  • Jo, Yun Ho;Lee, Hwan;Oh, Myeong Hwan;Lee, Gyeong Hee;Lee, You Jin;Lee, Ji Sun;Kim, Min Jung;Kim, Won Yong;Kim, Jin Seong;Yoo, Dae Seok;Cho, Sang Won;Cha, Seon Woo;Pyo, Mi Kyung
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.334-351
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Effects of a multi-strain probiotic on growth, health, and fecal bacterial flora of neonatal dairy calves

  • Guo, Yongqing;Li, Zheng;Deng, Ming;Li, Yaokun;Liu, Guangbin;Liu, Dewu;Liu, Qihong;Liu, Qingshen;Sun, Baoli
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.204-216
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effects of dietary supplementation with a multi-strain probiotic (MSP) product containing of Bifidobacterium animalis, Lactobacillus casei, Streptococcus faecalis, and Bacillus cerevisiae on growth, health, and fecal bacterial composition of dairy calves during the first month of life. Methods: Forty Holstein calves (24 female and 16 male) at 2 d of age were grouped by sex and date of birth then randomly assigned to 1 of 4 treatments: milk replacer supplementation with 0 g (0MSP), 2 g (2MSP), 4 g (4MSP), and 6 g (6MSP) MSP per calf per day. Results: Supplementation of MSP did not result in any significant differences in parameters of body measurements of calves during the 30 d period. As the dosage of MSP increased, the average daily gain (p = 0.025) and total dry matter intake (p = 0.020) of calves showed a linear increase. The fecal consistency index of the 2MSP, 4MSP, and 6MSP group calves were lower than that of the 0MSP group calves (p = 0.003). As the dosage of MSP increased, the concentrations of lactate dehydrogenase (p = 0.068) and aspartate aminotransferase (p = 0.081) in serum tended to decrease, whereas the concentration of total cholesterol increased quadratically (p = 0.021). The relative abundance of Dorea in feces was lower (p = 0.011) in the 2MSP, 4MSP, and 6MSP group calves than that in the 0MSP group calves. The relative abundance of Dorea (p = 0.001), Faecalibacterium (p = 0.050), and Mitsuokella (p = 0.030) decreased linearly, whereas the relative abundance of Prevotella tended to increase linearly as the dosage of MSP increased (p = 0.058). Conclusion: The MSP product can be used to reduce the diarrhea, improve the performance, and alter the composition of the fecal bacteria in neonatal dairy calves under the commercial conditions.

Basic Studies on Developing Equipment for Waterless Transportation of Live Fish (활어의 무수 수송 장치 개발을 위한 기초적 연구)

  • CHO Young-Je;KIM Yuck-Yong;LEE Nam-Geoul;CHOI Yeung-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.501-508
    • /
    • 1994
  • This study was undertaken to get basic data for the cold-waterless transportation of live fish. The optimal cold temperature of plaice, Paralichthy olivaceus was determined by checking the changes of dissolved oxygen and ammonia in the sea water and the survival times during storage at various temperatures. After determination of optimal temperature for transportation, the changes of serum components and muscle components of live plaice were also carried out during storage at cold($5^{\circ}C$)-waterless conditions and the recovery conditions($10\%$ density at $15^{\circ}C$). At higher storage temperature, decreases in dissolved oxygen and the increases in ammonia in seawater were observed. In addition, the survival time was short at low temperature($0^{\circ}C\;and\;3^{\circ}C$). Almost all of the serum components(hemoglobin, glucose, LDH, GOT and GPT) of live plaice gradually increased during storage in cold-waterless conditions, and then those values decreased to the initial levels after $3{\sim}10hrs$ storage in conditions of recovery. The concentration of ATP in the muscle steadily decreased during storage in cold-waterless conditions. The contents of ADP and IMP seemed to be directly related to the extent of ATP breakdown. ADP and IMP thus showed a gradual increase during storage. The level of lactate in the muscles gradually increased during these storage times, also. On the other hand, the levels of those components in the muscle entirely recovered to their original levels within $3{\sim}6hrs$ storage after they were returned to conditions of recovery. The ratio of ATP to the ATP and its related compounds${ATP/(ATP+ADP+AMP+IMP){\times}100}$ in the muscle showed $45\%$ after 18hrs storage in cold-waterless conditions. Otherwise, ratios returned to their original levels within $3{\sim}6hrs$ of storage in recovery conditions.

  • PDF