• Title/Summary/Keyword: serotonin (5-hydroxytryptamine

Search Result 63, Processing Time 0.03 seconds

Acute Effect of Alcohol and Nicotine on 5-Hydroxytryptamine Synthesis and Tryptophan Hydroxylase Expression in Dorsal and Median Raphe of Rats

  • Jang, Mi-Hyeon;Shin, Min-Chul;Chang, Hyun-Kyung;Lee, Taeck-Hyun;Kim, Khae-Hwan;Kim, Youn-Jung;Kim, Chang-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.5-8
    • /
    • 2003
  • Alcohol abuse and cigarette smoking have been on the rise worldwide and it has been reported that alcohol and nicotine influence serotonergic neuronal activity in the dorsal raphe. Serotonin (5-hydroxytryptamine, 5-HT) has been implicated in the pathophysiology of various neuropsychiatric disorders. In the present study, the effects of alcohol and nicotine on the synthesis of 5-HT and the expression of tryptophan hydroxylase (TPH), the rate limiting enzyme of 5-HT synthesis, in the dorsal and median raphe of young rats were investigated via immunohistochemistry. The numbers of the 5-HT-positive and TPH-positive cells in raphe nuclei were reduced by alcohol and nicotine treatment, and these numbers were reduced more potently by co-administration of alcohol and nicotine. Based on the results, it can be suggested that the pathogenesis of alcohol- and nicotine-induced neuropsychological disorders involves alcohol- and nicotine-induced suppression of 5-HT synthesis and TPH expression in raphe, and that this may be of particular relevance in the consumption of alcohol and nicotine during adolescence.

Inhibitory Effects of Extracts from Traditional Herbal Drugs on 5-Hydroxytryptamine Uptake in Primary Cultured Rat Brainstem Neurons (배양된 흰쥐 뇌간 신경세포에서 5-Hydroxytryptamine 흡수에 대한 각종 전통 생약 추출물의 억제 효과)

  • Cho, Hyun-Mi;Jung, Jun-Sup;Lee, Tae-Hee;Son, Kun-Ho;Suh, Hong-Won;Song, Dong-Keun;Kim, Yung-Hi
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.4
    • /
    • pp.349-354
    • /
    • 1995
  • Crude methanolic(80%) extracts from 109 kinds of traditional herbal drugs were randomly screened for inhibitory effects on 5-hydroxytryptamine(5-HT) uptake in primary cultured rat brainstem neurons. Rat brainstem neurons were cultured from embryonic day 14, and maintained for 7-9 days in vitro. Clomipramine (500 nM), a reference drug, decreased 5-HT uptake to 16% of control values. Of the 109 herbal drugs screened, Citri immaturi Pericarpium(靑皮), Coptidis Rhizoma(黃蓮), Cnidii Rhizoma(土川芎) showed the most potent 5-HT uptake inhibiting activities. These herbal drugs, at the concentration of $10{\;}{\mu}g/ml$, inhibited 5-HT uptake 69, 69, and 57% respectively, when inhibition(%) was expressed as a relative value compared to the 500 nM clomipramine-induced inhibition.

  • PDF

Association between COMT and 5-HTTLPR Polymorphisms in Korean Patients with Panic Disorder : A Replication Study (한국 공황장애 환자에서 COMT 및 5-HTTLPR 다형성의 연관 분석 : 재현 연구)

  • Kim, Se-Woong;Choi, Tai Kiu;Lee, Sang-Hyuk
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.4
    • /
    • pp.166-172
    • /
    • 2016
  • Objectives We investigated whether the catechol-O-methyltransferase (COMT) and serotonin related gene polymorphisms may be associated with agoraphobia in patients with panic disorder in Korea. Methods The COMT gene (rs4680), 5-hydroxytryptamine (serotonin) transporter linked polymorphic region (5-HTTLPR) gene (rs25531), serotonin receptor 1A (HTR1A) gene (rs6295) genotypes were analyzed in 406 patients with panic disorder and age-sex matched 206 healthy controls. Patients with panic disorder were dichotomized by the presence of agoraphobia. The following instruments were applied : the Beck Depression Inventory, the Beck Anxiety Inventory, the Panic Disorder Severity Scale. Results There was a significant difference in the distribution of 5-HTTLPR genotype between panic patients with agoraphobia and without agoraphobia (p = 0.024). That is, the panic patients with agoraphobia had a significant excess of the less active 5-HTTLPR allele (S allele). (p = 0.039) Also, we replicated previous western reports which indicated a significant difference in the distribution of COMT genotype between the patients with panic disorder and the healthy controls (p = 0.040). However, no significant associations of agora-phobia or panic disorder with HTR1A gene polymorphisms were found. Conclusions This result supports that the COMT polymorphisms may be associated with panic disorder and suggests that the 5-HTTLPR polymorphisms may play a role in the pathogenesis of agoraphobia in the Korean patients with panic disorder.

Anti-depressant and anti-anxiety effects of Saccharomyces cerevisiae extract and its hydrolyzed fraction (효모 추출물 SCE 및 그 분획 SCE-40의 항 우울 및 항 불안 효과)

  • Jung, Eun-Yee;Jeong, Min-Suk;Kwon, Young-Bae;Choi, Yoon-Suk;Pyun, Kwang-Ho;Kim, Ki-Won;Shim, In-Sop
    • Science of Emotion and Sensibility
    • /
    • v.10 no.2
    • /
    • pp.243-252
    • /
    • 2007
  • Anti-depressant and anti-anxiety effects of Saccharomyces cerevisiae extract and its hydrolyzed fraction. The purpose of the present study was to examine the effect of Saccharomyces cerevisiae extract (SCE) and its hydrolyzed fraction (SCE-40) on depression and anxiety-related behaviors in mice. Actions of SCE and SCE-40 on serotonin, norepinephrine and GABAergic systems in the rat cerebral cortex membranes were also examined. SCE and SCE-40 significantly reduced the immobility time in the forced swimming and tail suspension test in mice. Duration time of the open arms in the elevated plus maze test was significantly increased in the SCE and SCE-40-treated groups, compared with the saline-treated control group. SCE and its fraction SCE-40 significantly inhibited serotonin and norepinephrine transporter and GABA receptor binding, compared to the saline-treated group. In addition, serotonin and norepinephrine reuptake were significantly suppressed by SCE and SCE-40. These results demonstrate that SCE and SCE-40 produce anti-depressant and anti-anxiety effects through enhancing central serotonin, norepinephrine and GABAergic transmissions. These results suggest that SCE and SCE-40 as functional food might prove to be an effective antidepressant and anti-anxiety agent.

  • PDF

Interconnections between the Rat Dorsal Raphe and the Locus Coeruleus Nuclei Demonstrated by Anterograde Tracing with Phaseolus Vulgaris Leucoagglutinin

  • Lee, Hyun S.
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.221-229
    • /
    • 2004
  • The projections from the dorsal raphe (DR) to the locus coeruleus (LC) or vice versa were analyzed in the rat using an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L) combined with serotonin (5-hydroxytryptamine, 5-HT) or dopamine-beta-hydroxylase (DBH) immunostaining. Following the injection of PHA-L into the middle DR, DR-originating fibers with varicosities have contacted DBH-immunolabeled cells in the rostral, middle, and caudal LC. Axon terminals were also observed in the subcoeruleus nucleus. When the PHA-L injection was confined within the caudal DR, axonal fibers with varicosities were observed mainly at the rostral pole of the LC. Following the injection of PHA-L into the caudal, principal LC, labeled fibers with varicosities have contacted 5-HT-immunolabeled neurons at dorsomedial, ventromedial, lateral wing, and caudal sub-divisions of the DR. The present anterograde study suggests that the DR or the LC nuclei communicate with each other in order to perform a variety of functions including vigilance, analgesia, and stress responses.

Roles of Monoamine Neurotransmitters in Regulation of Hypothalamic PITUITITARY-ADRENAL AXIS(HPA) (III) - Role of 5-hydroxytryptamine in Controlling the Stress-Induced Elevation of Corticosterone in Rat - (시상하부-뇌하수체-부신계 조절에 대한 Monoamine 신경전달물질의 역할에 관한 연구(III)-뇌 5-hydroxytyptamine(Serotonin)이 Stress 시 Corticosteroid 변동에 미치는 영향)

  • Suh, Yoo-Hun;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.45-55
    • /
    • 1983
  • A role for brain serotonin(5-HT) in regulation of the HPA axis has been suggested but remains contoversial and poorly defined. The present experiments were designed to check kinetic parameters of 5-HT turnover in rat hypothalamus and remainder brain areas before and after stress and to test whether using various different pharmacologic approaches to stimulate or eliminate the control serotonergic system have any consistent effect on the stress-induced activation of HPA system. Steady state brain serotonin and 5-HIAA concentrations during 1 min ether stress were significantly elevated without significant rise in the levels of plasma corticosterone, which highly increased 2 minutes after stress. This suggests that the increase in serotonergic neuron activity precede that in HPA activity. Furthermore, during 1 ruin-ether stress or 30 min immobilization stress there is a marked increase in hypothalamic and remainder brain serotonin (5-HT) turnover or synthesis rates assessed by both the pargline/5-HT method and pargyline/5-HIAA method. The stress-induced corticosterone levels were increased by serotonin precursors and serotonin agonist in a dose-related fashion. The stress- induced corticosterone levels were highly elevated by L-tryptophan (100 mg/kg) and Potentiated by monoamine oxidase inhibitor, pargyline or serotonin agonist, 5-MeoDMT. The stress-induced elevation of corticosterone and 5-HT levels in rat brain were not significantly decreased by the administration of 5-HT synthesis inhibitor, PCPA and 5-HT neurotoxin, 5,7-DHT. However, the stress-induced elevation of corticosterone and 5-HT levels were decreased by the destruction of midline raphe nuclei. There was a strong positive correlation between plasma corticosterone and 5-HT concentrations changed by drugs which mainly manipulating 5-HT system in the hyhothalamus and in the remainder of the brain. In conclusion, our present data stongly suggest that 5-HT is an important key neurotransmitter involved in the stress-induced activation of the HPA system.

  • PDF

Effect of N-methyl-D-aspartic acid(NMDA)-and Non NMDA-Receptor Agonists on Serotonin Release from Cultured Neurons of Fetal Rat Brainstem (뇌간 신경세포 배양에서 세로토닌 분비에 대한 N-methyl-D-aspartic Acid(NMDA) 및 Non-NMDA 수용체 효현제들의 작용)

  • Yoo, Soon-Mi;Kim, Yul-A;Song, Dong-Keun;Suh, Hong-Won;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 1995
  • Serotonergic neurons in brainstem play important roles in the endogenous descending pain inhibitory system. To illucidate the involvement of glutamate receptors in the regulation of brainstem serotonergic neurons, we studied the effects of glutamate receptor agonists on 5-hydroxytryptamine(5-HT) release from cultured neurons of rat fetal (gestational age 14th day) brainstem. Cultured cells maintained for 10 days in vitro were stimulated for 30 minutes with agonists of glutamate receptor subtypes at 10-1,000 micromolar concentration. Glutamate (10-1,000 M) increased 5-HT release in a concentration-dependent manner. N-methyl-D-aspartic acid $(NMDA)(10-1,000\;{\mu}M)$ increased 5-HT release in a concentration-dependent manner. Non-NMDA receptor agonists, kainate and $AMPA(3-1,000\;{\mu}M)$ also concentration-dependently increased 5-HT release. These results suggest that both NMDA and non-NMDA receptors regulate 5-HT release from brainstem serotonergic neurons.

  • PDF

Study on the confirmation of drinking at the bloods & urines used 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol (5-Hydroxyindole-3-acetic acid와 5-hydroxytryptophol을 이용한 혈액 및 뇨에서 음주여부 확인에 관한 연구)

  • Kim, Myung-Duck;Kim, Young-Woon;Kwon, O-Sung;Park, Se-Youn;Kim, Eun-Ho
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.204-212
    • /
    • 2007
  • The study was carried out to investigate the ratio of ethanol to n-propanol in blood and urine specimens, and developed a method for distinguishing ingested ethanol from artifactual ethanol in urine samples. In case of no urinary ethanol was detected, the ratio of ethanol to n-propanol concentration was about 12~20 times higher than those of blood. Therefore, it might be a good method to determine whether the detected ethanol is from drinking or from microbial fermentation. During the metabolism of ethanol, the levels of the metabolite of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were decreased, while 5-hydroxytryptophol (5-HTOL) was increased. The levels of 5-HTOL/5-HIAA in urine samples of drinking suspects were greater than 1, in that of no drinking suspects were less than 1.

Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex

  • Joo, Kayoung;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.523-531
    • /
    • 2015
  • Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, ${\gamma}$-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.

Effects of Serotonin on the Induction of Long-term Depression in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.337-343
    • /
    • 2010
  • Long-term potentiation (LTP) and long-term depression (LTD) have both been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. In a previous study, we suggested that a developmental increase in serotonin [5-hydroxytryptamine (5-HT)] might be involved in the decline of LTP, since 5-HT inhibited its induction. In the present study, to further understand the role of 5-HT in a developmental decrease in plasticity, we investigated the effect of 5-HT on the induction of LTD in the pathway from layer 4 to layer 2/3. LTD was inhibited by 5-HT ($10{\mu}M$) in 5-week-old rats. The inhibitory effect was mediated by activation of 5-$HT_2$ receptors. Since 5-HT also regulates the development of visual cortical circuits, we also investigated the role of 5-HT on the development of inhibition. The development of inhibition was retarded by chronic (2 weeks) depletion of endogenous 5-HT in 5-week-old rats, in which LTD was reinstated. These results suggest that 5-HT regulates the induction of LTD directly via activation of 5-$HT_2$ receptors and indirectly by regulating cortical development. Thus, the present study provides significant insight into the roles of 5-HT on the development of visual cortical circuits and on the age-dependent decline of long-term synaptic plasticity.