• 제목/요약/키워드: serine protease

검색결과 317건 처리시간 0.025초

Engineering a Non-Inhibitory Serpin, Ovalbumin

  • Jeoung, Yeon-Hee;Yu, Myeong-Hee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1997년도 학술발표회
    • /
    • pp.38-38
    • /
    • 1997
  • Serpins (serine protease inhibitor) are single polypeptide proteins of around 400 amino acids, and have a conserved secondary structure consisted of three ${\beta}$-sheets and nine ${\alpha}$-helices. Native conformation of inhibitory serpins is a metastable and requires conformational changes to inhibit target protease.(omitted)

  • PDF

인체 유방암세포에서 calpain protease에 의한 cyclin D3의 발현 조절 (Regulation of Cyclin D3 by Calpain Protease in Human Breast Carcinoma MDA-MB-231 Cells)

  • 최병태;김군도;최영현
    • 생명과학회지
    • /
    • 제16권4호
    • /
    • pp.598-604
    • /
    • 2006
  • $Ca^{2+}$-농도 의존적으로 활성화되는 neutral protease calpain에 의한 단백질 분해는 세포의 성장을 조절하는데 중요한 단백질들의 역할에 매우 중요한 역할을 한다. Cyclin의 분해는 세포주기의 진행을 위한 필연적인 과정이다. D-type cyclins는 외부자극이나 신호에 의하여 세포주기의 G1 초기에 합성이 된 후 cyclin-dependent kinases (cdk4 및 cdk6)와의 결합하여 세포주기 S기 진입을 촉진하는 역할을 한다. 본 연구에서는 MDA-MB-231 인체 유방암세포에서 cyclin D3 단백질이 calpain protease에 의하여 전사 후 수준에서 조절 받고 있음을 제시하였다. 본 실험의 조건에서 lovastatin과 actinomycin D가 처리된 MDA-MB-231 세포에서 cyclin D3 단백질의 발현이 완전히 사라졌지만, calpain inhibitor인 LLnL의 처리에 의하여 정상 수준으로 회복되었음을 알 수 있었다. 그러나 26S proteasome의 선택적 억제제인 lactacystin, the lysosome 억제제인 ammonium chloride 및 chloroquine, serine protease 억제제인 PMSF는 동일 조건에서 lovastatin과 actinomycin D 처리에 의한 cyclin D3의 발현저하를 억제하지는 못하였다. In vitro 조건에서 순수 분리된 calpain은 cyclin D3 단백질을 $Ca^{2+}$ 농도 의존적으로 분해하였으며, cyclin D3 단백질의 half-life는 LLnL 처리에 의하여 매우 유의적으로 증가되었다. 이러한 결과는 cyclin D3 단백질이 $Ca^{2+}$에 의해 활성화 되는 protease calpain에 의해 조절됨을 보여준다.

Minor Thermostable Alkaline Protease Produced by Thermoactinomyces sp. E79

  • Kim, Young-Ok;Lee, Jung-Kee;Sunitha, Kandula;Kim, Hyung-Kwoun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.469-474
    • /
    • 1999
  • Thermoactinomyces sp. E79 produced two types of thermostable alkaline proteases extracellularly. A minor protease was separated from a major protease by using DEAE-column chromatography. This enzyme was purified to homogeneity by ammonium sulfate and DEAE-Sepharose ion-exchange chromatography. The purified minor protease showed different biochemical properties compared to the major protease. The molecular mass of the purified enzyme was estimated by SDS-PAGE to be 36 kDa. Its optimum temperature and pH for proteolytic activity against Hammarsten casein were $70^{\circ}C$ and 9.0, respectively. The enzyme was stable up to$75^{\circ}C$ and in an alkaline pH range of 9.0-11.0. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF) and $Hg^{2+}, indicating that the enzyme may be a cysteine-dependent serine protease. In addition, the enzyme cleaved the endoproteinase substrate, succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, and the $K_m$ value for the substrate was 1.2 mM.

  • PDF

Secretory production of prosubtilisin YaB by a six extracellular protease-deficient mutant of Bacillus subtilis

  • Byun, Dae-Seok;Chang, Young-Chae;Kang, Myung-Hwa
    • Journal of Life Science
    • /
    • 제11권1호
    • /
    • pp.42-46
    • /
    • 2001
  • Subtilisin YaB, produced by alkalophilic Bacillus strain YaB, is an extracellular alkaline serine protease having 55% homology to subtilisin BPN'. It is synthesized as a 378-amino acid preproenzyme and secreted into the culture medium as a 265-amino acid mature protease. To examine the role of pro-sequence for the secretion of subtilisin YaB, we have studied the expression, in Bacillus subtilis, of a mutant preprosubtilisin YaB in which active site Ser214 is substituted with Cys. The use of a six protease-deficient strain, WB600, was required for its efficient production. The prosubtilisin YaB, thus produced, was indeed secreted into the culture medium and was processed to its mature form upon treatment with exogenously added active subtilisin YaB. From these results, we have concluded that the processing of pro-sequence is not essential for the secretion of the enzyme.

  • PDF

Partial characterization of a 29kDa cysteine protease purified from Taenia solium metacestodes

  • KIM Ji-Young;YANG Hyun-Jong;KIM Kwang-Sig;CHUNG Young-Bae
    • Parasites, Hosts and Diseases
    • /
    • 제43권4호
    • /
    • pp.157-160
    • /
    • 2005
  • A 29kDa cysteine protease of Taenia solium metacestodes was purified by Mono Q anion-exchanger and Superose 6 HR gel filtration chromatography. The enzyme was effectively inhibited by cysteine protease inhibitors, such as iodoacetic acid (IAA) and trans-epoxy-succinyl-L-leucyl-amido (4-guanidino) butane (E-64) while inhibitors acting on serine- or metallo-proteases did not affect the enzyme activity. The purified enzyme degraded human immunoglobulin G (IgG), collagen and bovine serum albumin (BSA), but human IgG was more susceptible for proteolysis by the enzyme. To define the precise biological roles of the enzyme, more detailed biochemical and functional studies would be required.

Halomonas sp. ES 10이 생산하는 alkaline protease의 특성 (Characteristics of the alkaline protease from the moderate halophile, Halomonas sp. ES 10)

  • 김찬조;오만진;최성현
    • Applied Biological Chemistry
    • /
    • 제35권4호
    • /
    • pp.237-241
    • /
    • 1992
  • Halomonas sp. ES 10이 생산하는 protease를 methanol 침전, Sephadex G-150, G-200 및 DEAE-Sephadex A-50으로 여과하여 비활성이 1,014 units/mg protein, 수율이 7%로 정제하였다. 이 효소의 작용 최적온도 및 pH는 $35^{\circ}C$ 와 pH 11.0 이었고, $50^{\circ}C$ 에서 40분에 70%의 잔존활성을 보였으며 $pH\;7.5{\sim}11.0$ 범위에서 안정하였다. 정제효소의 우유 casein에 대한 Km값은 7.4 mg/ml 이었다. $Li^+$, $Ca^{2+}$, SDS, Tween 80 등은 효소 활성을 다소 증가시키고 $Hg^{2+}$과 EDTA는 심히 저해하였다. DFP와 PMSF에 의해서는 각각 63%, 107%의 상대활성을 보여 이 효소는 serine protease가 아님을 시사하였다. 0.5 M과 1 M의 NaCl 농도에서 각각 95%와 65%의 상대활성을 보여 일반 미생물의 protease 보다 각각 20%, 15%씩 상대활성이 높았다.

  • PDF

Purification and Characterization of Two Alkaline Proteases Produced by Pseudomonas sp. BK7

  • 이은구;박은희;현형환
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권5호
    • /
    • pp.667-667
    • /
    • 2000
  • Pseudomonas sp. BK7, an alkalophile, displayed the highest growth and protease activity when grown in a fermenter which was controlled at a pH level of 9.0, and the enzyme production was significantly enganced by the increase of agitation speed. Two formas of alkaline proteases (BK7-1 and BK7-2) were fractionated and purified to near homogeneity. Protease BK7-1 was purified through CM-Sepharose CL-6B and Sephadex G-75 column chromatographies, and Protease BK7-2 was purified through CM-Sepharose CL-6B and Sephadex G-75 column chromatographies, and Protease BK7-2 was purified through CM-Sepharose CL-6B, DEAE-Sepharose, and Sephadex G-75 column chromatographies. The molecular weights of proteases BK7-1 and BK7-2 determined by gel filtration chromatography were 20,700 and 40,800, respectively. The $K_m$ value, isoelectric point, and optimum pH of protease BK7-1 were 2.55 mg/ml, 11.0 and 11.0, respectively, whereas those of protease BK7-2 were 1.57 mg/ml, 7.2, and 10.0, respectively. Both protease were practically stable in the pH range of 5-11. The optimum temperatures for the activities of both protease BK7-1 and BK7-2 were 50℃ and 45℃, respectively. About 56% of the original protease BK7-2 activity remained after being treated at 50℃ for 30 min but protease BK7-1 was rapidly inactivated at above 25℃. Both proteases were completely inhibited by phenylmethane sulfonyl fluoride, a serine protease inhibitor. Protease BK7-2 was stable against EDTA, EGTA, STP, and detergents such as SDS and LAS, whereas protease BK7-1 was found to be unstable.

Purification and Characterization of Extracellular Temperature-Stable Serine Protease from Aeromonas hydrophila

  • Cho, Soo-Jin;Park, Jong-Ho;Park, Seong-Joo;Lim, Jong-Soon;Kim, Eung-Ho;Cho, Yeon-Jae;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.207-211
    • /
    • 2003
  • Extracellular protease, from Aeromonas hydrophila Ni 39, was purified 16.7-fold to electrophoretic homogeneity with an overall yield of 19.9%, through a purification procedure of acetone precipitation, and Q Sepharose and Sephacryl S-200 chromatographies. The isoelectric point of the enzyme was 6.0 and the molecular mass, as determined by Sephacryl S-200 HR chromatography, was found to be about 102 kDa. SDS/PAGE revealed that the enzyme consisted of two subunits, with molecular masses of 65.9 kDa. Under standard assay conditions, the apparent $K_{m}$ value of the enzyme toward casein was 0.32 mg/ml. About 90% of the proteolytic activity remained after heating at 60$^{\circ}C$ for 30 min. The highest rate of azocasein hydrolysis for the enzyme was reached at 60$^{\circ}C$, and the optimum pH of the enzyme was 9.0. The enzyme was inhibited by the serine protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), by about 87.9%, but not by E64, EDTA, pepstatin or 1,10-phenanthroline. The enzyme activity was inhibited slightly by Ca$\^$2+/, Mg$\^$2+/ and Zn/supb 2+/ ions.

Distinct Regulation of the sprC Gene Encoding Streptomyces griseus Protease C from Other Chymotrypsin Genes in Streptomyces griseus IFO13350

  • Choi, Eun-Yong;Oh, Eun-A;Kim, Jong-Hee;Kang, Dae-Kyung;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.81-88
    • /
    • 2007
  • The sprC gene encodes Streptomyces griseus protease C (SGPC), a bacterial chymotrypsin-like serine protease. Because the published data on sprC was not complete, we cloned and analyzed a new DNA fragment spanning downstream to upstream of the sprC gene from S. griseus IFO13350. The cloned 2.3-kb DNA fragment was placed on a high-copy number plasmid and introduced into Streptomyces lividans TK24. Chymotrypsin activity of the transformant was 8.5 times higher than that of the control after 3 days of cultivation and stably maintained until 9 days of cultivation, which dearly indicated that the cloned 2.3-kb fragment contained the entire sprC gene with its own promoter. When the same construct was introduced in the S. griseus IFO13350 (wild strain) and its two mutant strains in the A-factor regulatory cascade, ${\Delta}adpA$ and HO1, the chymotrypsin activity increased fivefold only in the ${\Delta}adpA$ strain. Transcriptional analysis based on RT-PCR revealed that the sprC gene is normally transcribed in both strains; however, earlier transcription was observed in the wild strain compared with the ${\Delta}adpA$ strain. A gel mobility shift assay showed that the AdpA protein did not bind to the promoter region of sprC. All these data clearly indicate that the expression of sprC is not dependent on the AdpA protein, but is distinctly regulated from other chymotrypsin genes composing an AdpA regulon. Earlier morphological differentiation was observed in S. lividans TK24, and S. griseus IFO13350 and HO1, transformed with the expression vector. The transformant of S. griseus ${\Delta}adpA$ formed markedly larger colonies. Antisense repression of sprC resulted in severe decrease of chymotrypsin activity, down to one-third of the control, and delayed morphological differentiation. All these data suggest that SGPC is related to normal morphogenesis in S. griseus.

Purification and Characterization of Two Alkaline Protease Produced by Pseudomonas sp. BK7

  • Lee, Eun-Goo;Park, Eun-Hee;Hyun, Hyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권5호
    • /
    • pp.677-684
    • /
    • 2000
  • Pseudomonas sp. BK7, an alkalophile, displayed the highest growth and protease activity when grown in a fermenter which was controlled at a pH level of 9.0, and the enzyme production was significantly enhanced by the increase of agitation speed. Two forms of alkaline proteases (BK7-1 and BK7-2) were fractionated and purified to near homogeneity. Protease BK7-1 was purified through CM-Sepharose CL-6B and Sephadex G-75 column chromatographies, and Protease BK7-2 was purified through CM-Sepharose CL-6B, DEAE-Sepharose, and Sephadex G-75 column chromatographies. The molecular weights of proteases BK7-1 and BK7-2 determined by gel filtration chromatography were 20,700 and 40,800, respectively. The $K_m$ value, isoelectric point, and optimum pH of protease BK7-1 were 2.55 mg/ml, 11.0, and 11.0, respectively, whereas those of protease BK7-2 were 1.57 mg/ml, 7.2, and 10.0, respectively. Both proteases were practically stable in the pH range of 5-11. The optimum temperatures for the activities of both protease BK7-1 and BK7-2 were $50^{\circ}C$ and $45^{\circ}C$, respectively. About 56% of the original protease BK7-2 activity remained after being treated at $50^{\circ}C$ for 30 min but protease BK7-1 was rapidly inactivated at above $25^{\circ}C$. Both proteases were completely inhibited by phenylmethane sulfonyl fluoride, a serine protease inhibitor. Protease BK7-2 was stable against EDTA, EGTA, STP, and detergents such as SDS and LAS, whereas protease BK7-1 was found to be unstable.

  • PDF