Distinct Regulation of the sprC Gene Encoding Streptomyces griseus Protease C from Other Chymotrypsin Genes in Streptomyces griseus IFO13350

  • Choi, Eun-Yong (Department of Biological Science, Myongji University) ;
  • Oh, Eun-A (Department of Biological Science, Myongji University) ;
  • Kim, Jong-Hee (Department of Food and Nutrition, Seoil College) ;
  • Kang, Dae-Kyung (Department of Animal Resources and Sciences, Dankook University) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • Published : 2007.01.31

Abstract

The sprC gene encodes Streptomyces griseus protease C (SGPC), a bacterial chymotrypsin-like serine protease. Because the published data on sprC was not complete, we cloned and analyzed a new DNA fragment spanning downstream to upstream of the sprC gene from S. griseus IFO13350. The cloned 2.3-kb DNA fragment was placed on a high-copy number plasmid and introduced into Streptomyces lividans TK24. Chymotrypsin activity of the transformant was 8.5 times higher than that of the control after 3 days of cultivation and stably maintained until 9 days of cultivation, which dearly indicated that the cloned 2.3-kb fragment contained the entire sprC gene with its own promoter. When the same construct was introduced in the S. griseus IFO13350 (wild strain) and its two mutant strains in the A-factor regulatory cascade, ${\Delta}adpA$ and HO1, the chymotrypsin activity increased fivefold only in the ${\Delta}adpA$ strain. Transcriptional analysis based on RT-PCR revealed that the sprC gene is normally transcribed in both strains; however, earlier transcription was observed in the wild strain compared with the ${\Delta}adpA$ strain. A gel mobility shift assay showed that the AdpA protein did not bind to the promoter region of sprC. All these data clearly indicate that the expression of sprC is not dependent on the AdpA protein, but is distinctly regulated from other chymotrypsin genes composing an AdpA regulon. Earlier morphological differentiation was observed in S. lividans TK24, and S. griseus IFO13350 and HO1, transformed with the expression vector. The transformant of S. griseus ${\Delta}adpA$ formed markedly larger colonies. Antisense repression of sprC resulted in severe decrease of chymotrypsin activity, down to one-third of the control, and delayed morphological differentiation. All these data suggest that SGPC is related to normal morphogenesis in S. griseus.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Brown, K. L., S. Wood, and M. J. Buttner. 1992. Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2): Renaturation of a sigma subunit using GroEL. Mol. Microbiol. 6: 1133-1139 https://doi.org/10.1111/j.1365-2958.1992.tb01551.x
  3. Chater, K. F. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685-713 https://doi.org/10.1146/annurev.mi.47.100193.003345
  4. Chater, K. F. and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48: 9-15 https://doi.org/10.1046/j.1365-2958.2003.03476.x
  5. Chi, W.-J., J.-M. Kim, S.-S. Choi, D.-K. Kang, and S.-K. Hong. 2001. Overexpression of SGPA and SGT induces morphological changes in Streptomyces lividans. J. Microbiol. Biotehnol. 11: 1077-1086
  6. Choi, S.-S., J. H. Kim, J.-H. Kim, D.-K. Kang, S.-S. Kang, and S.-K. Hong. 2006. Functional analysis of sprD gene encoding Streptomyces griseus protease D (SGPD) in Stretomyces griseus . J. Microbiol. Biotechnol. 16: 312-317
  7. Choi, S.-S., W.-J. Chi, J. H. Lee, S.-S. Kang, D.-K. Kang, B. C. Jeong, and S.-K. Hong. 2001. Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305-313
  8. Gibb, G. D. and W. R. Strohl. 1988. Physiological regulation of protease activity in Streptomyces peucetius. Can. J. Microbiol. 34: 187-190 https://doi.org/10.1139/m88-034
  9. Ginther, C. L. 1979. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob. Agents Chemother. 15: 522-526 https://doi.org/10.1128/AAC.15.4.522
  10. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  11. Hara, O. and T. Beppu. 1982. Mutants blocked in streptomycin production in Streptomyces griseus - the role of A-factor. J. Antibiot. 35: 349-358 https://doi.org/10.7164/antibiotics.35.349
  12. Henderson, G., P. Krygsman, C. J. Liu, C. C. Davey, and L. T. Malek. 1987. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J. Bacteriol. 169: 3778-3784 https://doi.org/10.1128/jb.169.8.3778-3784.1987
  13. Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7: 2045- 2057 https://doi.org/10.2741/horinouc
  14. Ishikawa, J. and K. Hotta. 1999. FramePlot: A new implementation of the frame analysis for predicting proteincoding regions in bacterial DNA with a high G+C content. FEMS Microbiol. Lett. 174: 251-253 https://doi.org/10.1111/j.1574-6968.1999.tb13576.x
  15. Kato, J.-Y., W.-J. Chi, Y. Ohnishi, S.-K. Hong, and S. Horinouchi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295 https://doi.org/10.1128/JB.187.1.286-295.2005
  16. Kato, J. Y., A. Suzuki, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol.184: 6016-6025 https://doi.org/10.1128/JB.184.21.6016-6025.2002
  17. Kieser, H., M. J. Bibb, M. J. Buttner, F. K. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK
  18. Kim, D. W., S. G. Kang, I. S. Kim, B. K. Lee, Y. T. Rho, and K. J. Lee. 2006. Proteases and protease inhibitors produced in Streptomycetes and their roles in morphological differentiation. J. Microbiol. Biotechnol. 16: 5-14
  19. Kim, I. S. and K. J. Lee. 1996. Trypsin-like protease of Streptomyces exfoliatus SMF13, a potential agent in mycelial differentiation. Microbiology 142: 1797-1806 https://doi.org/10.1099/13500872-142-7-1797
  20. Kim, J.-M. and S.-K. Hong. 2000. Streptomyces griseus HH1, an A-factor deficient mutant, produces diminished level of trypsin and increased level of metalloproteases. J. Microbiol. 38: 160-168
  21. Kim, Y.-H., S.-S. Choi, D.-K. Kang, S.-S. Kang, B.-C. Jeong, and S.-K. Hong. 2004. Overexpression of sprA and sprB genes is tightly regulated in Streptomyces griseus. J. Microbiol. Biotechnol. 14: 1350-1355
  22. Miguelez, E. M., C. Hardisson, and M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: Morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145: 515-525 https://doi.org/10.1083/jcb.145.3.515
  23. Nicieza, R. G., J. Huergo, B. A. Connolly, and J. Sanchez. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. Analogies with the biochemical processes described in late steps of eukaryotic apoptosis. J. Biol. Chem. 274: 20366-20375 https://doi.org/10.1074/jbc.274.29.20366
  24. Ohnishi, Y., H. Yamazaki, J. Kato, A. Tomono, and S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69: 431-439 https://doi.org/10.1271/bbb.69.431
  25. Okanishi, M., K. Suzuki, and H. Umezawa. 1974. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 80: 389-400 https://doi.org/10.1099/00221287-80-2-389
  26. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  27. Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1994. Streptomyces griseus protease C. A novel enzyme of the chymotrypsin superfamily. J. Biol. Chem. 269: 20167- 20171
  28. Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1995. Protease evolution in Streptomyces griseus. J. Biol. Chem. 270: 7594-7600 https://doi.org/10.1074/jbc.270.13.7594
  29. Tomono, A., Y. Tasi, Y. Ohnishi, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187: 6341-6353 https://doi.org/10.1128/JB.187.18.6341-6353.2005
  30. Trop, M. and Y. Birk. 1970. The specificity of proteases from Streptomyces griseus (Pronase). J. Biochem. 116: 19- 25 https://doi.org/10.1042/bj1160019
  31. Yamazaki, H., A. Tomono, Y. Ohnishi, and S. Horinouchi. 2004. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 53: 555-572 https://doi.org/10.1111/j.1365-2958.2004.04153.x
  32. Yang, H. Y., S.-S. Choi, W.-J. Chi, J. H. Kim, D.-K. Kang, J. Chun, S.-S. Kang, and S.-K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in Streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129
  33. Yoshida, N., S. Tsuruyama, K. Nagata, K. Hirayama, K. Noda, and S. Makisumi. 1988. Purification and characterization of an acidic amino acid specific endopeptidase of Streptomyces griseus obtained from a commercial preparation (Pronase). J. Biochem. 104: 451-456 https://doi.org/10.1093/oxfordjournals.jbchem.a122488