Browse > Article

Distinct Regulation of the sprC Gene Encoding Streptomyces griseus Protease C from Other Chymotrypsin Genes in Streptomyces griseus IFO13350  

Choi, Eun-Yong (Department of Biological Science, Myongji University)
Oh, Eun-A (Department of Biological Science, Myongji University)
Kim, Jong-Hee (Department of Food and Nutrition, Seoil College)
Kang, Dae-Kyung (Department of Animal Resources and Sciences, Dankook University)
Hong, Soon-Kwang (Department of Biological Science, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 81-88 More about this Journal
Abstract
The sprC gene encodes Streptomyces griseus protease C (SGPC), a bacterial chymotrypsin-like serine protease. Because the published data on sprC was not complete, we cloned and analyzed a new DNA fragment spanning downstream to upstream of the sprC gene from S. griseus IFO13350. The cloned 2.3-kb DNA fragment was placed on a high-copy number plasmid and introduced into Streptomyces lividans TK24. Chymotrypsin activity of the transformant was 8.5 times higher than that of the control after 3 days of cultivation and stably maintained until 9 days of cultivation, which dearly indicated that the cloned 2.3-kb fragment contained the entire sprC gene with its own promoter. When the same construct was introduced in the S. griseus IFO13350 (wild strain) and its two mutant strains in the A-factor regulatory cascade, ${\Delta}adpA$ and HO1, the chymotrypsin activity increased fivefold only in the ${\Delta}adpA$ strain. Transcriptional analysis based on RT-PCR revealed that the sprC gene is normally transcribed in both strains; however, earlier transcription was observed in the wild strain compared with the ${\Delta}adpA$ strain. A gel mobility shift assay showed that the AdpA protein did not bind to the promoter region of sprC. All these data clearly indicate that the expression of sprC is not dependent on the AdpA protein, but is distinctly regulated from other chymotrypsin genes composing an AdpA regulon. Earlier morphological differentiation was observed in S. lividans TK24, and S. griseus IFO13350 and HO1, transformed with the expression vector. The transformant of S. griseus ${\Delta}adpA$ formed markedly larger colonies. Antisense repression of sprC resulted in severe decrease of chymotrypsin activity, down to one-third of the control, and delayed morphological differentiation. All these data suggest that SGPC is related to normal morphogenesis in S. griseus.
Keywords
sprC; Streptomyces griseus; SGPC; serine protease; bacterial chymotrypsin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Brown, K. L., S. Wood, and M. J. Buttner. 1992. Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2): Renaturation of a sigma subunit using GroEL. Mol. Microbiol. 6: 1133-1139   DOI   ScienceOn
2 Miguelez, E. M., C. Hardisson, and M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: Morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145: 515-525   DOI   ScienceOn
3 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
4 Yang, H. Y., S.-S. Choi, W.-J. Chi, J. H. Kim, D.-K. Kang, J. Chun, S.-S. Kang, and S.-K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in Streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129   과학기술학회마을
5 Yoshida, N., S. Tsuruyama, K. Nagata, K. Hirayama, K. Noda, and S. Makisumi. 1988. Purification and characterization of an acidic amino acid specific endopeptidase of Streptomyces griseus obtained from a commercial preparation (Pronase). J. Biochem. 104: 451-456   DOI
6 Kim, D. W., S. G. Kang, I. S. Kim, B. K. Lee, Y. T. Rho, and K. J. Lee. 2006. Proteases and protease inhibitors produced in Streptomycetes and their roles in morphological differentiation. J. Microbiol. Biotechnol. 16: 5-14   과학기술학회마을
7 Yamazaki, H., A. Tomono, Y. Ohnishi, and S. Horinouchi. 2004. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 53: 555-572   DOI   ScienceOn
8 Kim, I. S. and K. J. Lee. 1996. Trypsin-like protease of Streptomyces exfoliatus SMF13, a potential agent in mycelial differentiation. Microbiology 142: 1797-1806   DOI   ScienceOn
9 Choi, S.-S., J. H. Kim, J.-H. Kim, D.-K. Kang, S.-S. Kang, and S.-K. Hong. 2006. Functional analysis of sprD gene encoding Streptomyces griseus protease D (SGPD) in Stretomyces griseus . J. Microbiol. Biotechnol. 16: 312-317   과학기술학회마을
10 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580   DOI
11 Kieser, H., M. J. Bibb, M. J. Buttner, F. K. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK
12 Choi, S.-S., W.-J. Chi, J. H. Lee, S.-S. Kang, D.-K. Kang, B. C. Jeong, and S.-K. Hong. 2001. Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305-313
13 Chater, K. F. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685-713   DOI   ScienceOn
14 Chi, W.-J., J.-M. Kim, S.-S. Choi, D.-K. Kang, and S.-K. Hong. 2001. Overexpression of SGPA and SGT induces morphological changes in Streptomyces lividans. J. Microbiol. Biotehnol. 11: 1077-1086
15 Gibb, G. D. and W. R. Strohl. 1988. Physiological regulation of protease activity in Streptomyces peucetius. Can. J. Microbiol. 34: 187-190   DOI   ScienceOn
16 Okanishi, M., K. Suzuki, and H. Umezawa. 1974. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 80: 389-400   DOI   ScienceOn
17 Kim, Y.-H., S.-S. Choi, D.-K. Kang, S.-S. Kang, B.-C. Jeong, and S.-K. Hong. 2004. Overexpression of sprA and sprB genes is tightly regulated in Streptomyces griseus. J. Microbiol. Biotechnol. 14: 1350-1355
18 Chater, K. F. and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48: 9-15   DOI   ScienceOn
19 Henderson, G., P. Krygsman, C. J. Liu, C. C. Davey, and L. T. Malek. 1987. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J. Bacteriol. 169: 3778-3784   DOI
20 Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7: 2045- 2057   DOI
21 Hara, O. and T. Beppu. 1982. Mutants blocked in streptomycin production in Streptomyces griseus - the role of A-factor. J. Antibiot. 35: 349-358   DOI
22 Ishikawa, J. and K. Hotta. 1999. FramePlot: A new implementation of the frame analysis for predicting proteincoding regions in bacterial DNA with a high G+C content. FEMS Microbiol. Lett. 174: 251-253   DOI   ScienceOn
23 Kato, J. Y., A. Suzuki, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol.184: 6016-6025   DOI   ScienceOn
24 Kato, J.-Y., W.-J. Chi, Y. Ohnishi, S.-K. Hong, and S. Horinouchi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295   DOI   ScienceOn
25 Ohnishi, Y., H. Yamazaki, J. Kato, A. Tomono, and S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69: 431-439   DOI   ScienceOn
26 Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1995. Protease evolution in Streptomyces griseus. J. Biol. Chem. 270: 7594-7600   DOI
27 Tomono, A., Y. Tasi, Y. Ohnishi, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187: 6341-6353   DOI   ScienceOn
28 Trop, M. and Y. Birk. 1970. The specificity of proteases from Streptomyces griseus (Pronase). J. Biochem. 116: 19- 25   DOI
29 Ginther, C. L. 1979. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob. Agents Chemother. 15: 522-526   DOI   ScienceOn
30 Nicieza, R. G., J. Huergo, B. A. Connolly, and J. Sanchez. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. Analogies with the biochemical processes described in late steps of eukaryotic apoptosis. J. Biol. Chem. 274: 20366-20375   DOI
31 Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1994. Streptomyces griseus protease C. A novel enzyme of the chymotrypsin superfamily. J. Biol. Chem. 269: 20167- 20171
32 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254   DOI   ScienceOn
33 Kim, J.-M. and S.-K. Hong. 2000. Streptomyces griseus HH1, an A-factor deficient mutant, produces diminished level of trypsin and increased level of metalloproteases. J. Microbiol. 38: 160-168