• Title/Summary/Keyword: series power device

Search Result 208, Processing Time 0.027 seconds

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads

  • Lee, Kyungsoo
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.131-139
    • /
    • 2016
  • This paper shows the series power device in the massive roof-top PVs and domestic loads. D-UPFC as the series power device controls the distribution voltage during voltage rise (or fall) condition. D-UPFC consists of the bi-directional ac-ac converter and the transformer. In order to verify the D-UPFC voltage control, the distribution model is used in the case study. D-UPFC enables the voltage control in the distribution voltage range. Dynamic voltage control from voltage rise and voltage fall conditions is performed. Scaled-down experimental test of the D-UPFC is verified the voltage control and it is well performed without high voltage spikes in the inductive load.

Algorithm of reactive power injection on Distributed Static Series Compensator (송전 전력 제어를 위한 분산 정지형 직렬 보상기의 무효전력 주입 기법)

  • Yoon, Hanjong;Lee, Taeyoung;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.214-215
    • /
    • 2017
  • Distributed Flexible AC Transmission System(D-FACTS) was proposed as a solution for weakness of FACTS device s. The D-FACTS device DSSC(Distributed Static Series Co mpensator) can provide controllable reactance compensation in transmission line such as SSSC(Static Synchronous Series Compensator). This paper introduce the algorithm of reactive power injection on DSSC and propose the method of current balancing by reactive power injection. The proposed algorithm has been verified with simulation and experiment results.

  • PDF

Device Suitability Analysis by Comparing Performance of SiC MOSFET and GaN Transistor in Induction Heating System (유도 가열 시스템에서 SiC MOSFET과 GaN Transistor의 성능 비교를 통한 소자 적합성 분석)

  • Cha, Kwang-Hyung;Ju, Chang-Tae;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • In this study, device suitability analysis is performed by comparing the performance of SiC MOSFET and GaN Transistor, which are WBG power semiconductor devices in the induction heating (IH) system. WBG devices have the advantages of low conduction resistance, switching losses, and fast switching due to their excellent physical properties, which can achieve high output power and efficiency in IH systems. In this study, SiC and GaN are applied to a general half-bridge series resonant converter topology to compare the conduction loss, switching loss, reverse conduction loss, and thermal performance of the device in consideration of device characteristics and circuit conditions. On this basis, device suitability in the IH system is analyzed. A half-bridge series resonant converter prototype using the SiC and GaN of a 650-V rating is constructed to verify device suitability through performance comparison and verified through an experimental comparison of power loss and thermal performance.

Self-Feeder Driver for Voltage Balance in Series-Connected IGBT Associations

  • Guerrero-Guerrero, A.F.;Ustariz-Farfan, A.J.;Tacca, H.E.;Cano-Plata, E.A.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.68-78
    • /
    • 2019
  • The emergence of high voltage conversion applications has resulted in a trend of using semiconductor device series associations. Series associations allow for operation at blocking voltages, which are higher than the nominal voltage for each of the semiconductor devices. The main challenge with these topologies is finding a way to guarantee the voltage balance between devices in both blocking and switching transients. Most of the methods that have been proposed to mitigate static and dynamic voltage unbalances result in increased losses within the device. This paper introduces a new series stack topology, where the voltage unbalances are reduced. This in turn, mitigates the switching losses. The proposed topology consists of a circuit that ensures the soft switching of each device, and one auxiliary circuit that allows for switching energy recovery. The principle for the topology operation is presented and experimental tests are performed for two modules. The topology performs excellently for switching transients on each of the devices. The voltage static unbalances were limited to 10%, while the activation/deactivation delay introduced by the lower module IGBT driver takes place in the dynamic unbalances. Thus, the switching losses are reduced by 40%, when compared to hard switching configurations.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

An Imrpoved Gate Control Scheme for Overvoltage Clamping under IGBT Series Connection (IGBT 직렬 연결시 과전압 제한을 위한 게이트 구동기법)

  • Kim, Wan-Jong;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Series connection of power semiconductor devices is selected in high voltage and high power applications. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme changes the slope of collector voltage by sensing the collector voltage and controlling the gate signal actively. The new series connected IGBT gate driver is made and its validity is verified by the experimental results for series connected IGBT circuit.

  • PDF

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

A Study on Multi-level Converter Based on Distribution Active Hybrid Solid State Transformer (멀티레벨 컨버터 기반 배전용 능동형 하이브리드 반도체 변압기에 대한 연구)

  • Yun, Chun-gi;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.84-86
    • /
    • 2018
  • Active hybrid solid state transformer(AHSST) is newly emerging as a device to maintan the power quality of power distribution. AHSST has a simple structure in which a power electronics device is connected in series to a conventional distribution transformer. The connected power electronics device maintains the constant voltage regardless of the primary grid voltage fluctuation through the secondary voltage control to improve the power quality. It also has a simple structure compare to conventional solid state transformer system and can achieve the same performance with fractionally-rated converter. This paper proposes an multi-level converter based on AHSST system that has a simpler control method and wider voltage control range than the conventional AHSST. The proposed system is verified by simulations.

  • PDF

A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter (직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구)

  • Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

An Improved Turn-Off Gate Control Scheme for Series Connected IGBTs (IGBT 직렬 연결을 위한 턴-오프 게이트 구동기법)

  • 김완중;최창호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.99-104
    • /
    • 1999
  • The large scale industry needs high voltage converters. Therefore series connection of power semiconductor devices is necessary. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme which senses the collector voltage and controls the gate signal actively limits the overvoltage. The new series connected IGBT gate driver is made and its validity is verified by the experimental results in the series connected IGBT circuit.