• Title/Summary/Keyword: separation type

Search Result 1,035, Processing Time 0.028 seconds

Factorial Experiment for Drum-type Secondary Separating Part of Self-propelled Pepper Harvester

  • Nam, Ju-Seok;Kang, Young-Sun;Kim, Su-Bin;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.242-250
    • /
    • 2017
  • Purpose: This study was conducted to determine the appropriate operating conditions through a factorial experiment for the secondary separating part of the self-propelled pepper harvester. Methods: An experimental setup that simulates the secondary separating part of the self-propelled pepper harvester was organized. Test samples were classified into three types according to the number of peppers on a stem, and 12 sets were prepared for each type. Among the operating conditions of the secondary separating part, the rotational speed of drum B (four levels), radial clearance between drums and cylindrical teeth (three levels), and speed ratio between the three drums (two levels) were set as the test factors, and tests were repeated three times for different levels of each factor. The appropriate operating conditions were determined by analyzing the separation ratio and damage ratio of the peppers collected through the secondary separating part. Results: The test factors changed the overall separation ratio and overall damage ratio in similar trends. In other words, the conditions that caused high overall separation ratios also exhibited high overall damage ratios. Owing to the high overall damage ratio in the condition with the highest overall separation ratio, the operating conditions should be selected considering both ratios. Conclusions: When the condition with more than 60% of overall separation ratio and less than 15% of overall damage ratio was considered as the appropriate operating condition, 70 rpm of the rotational speed of drum B, 5 mm of the radial clearance between drums and cylindrical teeth, and 7:3:5 for the speed ratio of the three drums A, B, and C should be applied for the secondary separating part used in this study. Supplementary studies will be required in the future to find optimal operating conditions through the actual field test under further divided test factors.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

A Study of Rupture Pressure for Membrane Type Pulse Separation Device of Dual Pulse Rocket Motor (이중펄스 추진기관의 펄스분리장치 파열압력 분석기법 연구)

  • Kim, Seil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.98-106
    • /
    • 2022
  • To develop reliable dual pulse rocket motor, vacuum ignition performance at high altitude and design stability for rupture pressure of the Pulse Separation Device(PSD) are required. In this study, rupture pressure analysis method for the membrane type PSD of the dual pulse rocket motor was developed. The PSD rupture pressure formulation was derived from strain-pressure relationships. The PSD vacuum rupture test apparatus and the PSD 1 second vacuum ignition test apparatus were developed, which can simulate the high altitude vacuum environment. Rupture pressure of PSD was analyzed by conducting the PSD vacuum rupture test, and design values of PSD were derived. Finally, vacuum ignition performance and rupture pressure of the designed PSD were validated with PSD 1 second vacuum ignition test.

A BUSSGANG-TYPE ALGORITHM FOR BLIND SIGNAL SEPARATION

  • Choi, Seung-Jin;Lyu, Young-Ki
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1191-1194
    • /
    • 1998
  • This paper presents a new computationally efficient adaptive algorithm for blind signal separation, which is able to recover the narrowband source signals in the presence of cochannel interference without a prior knowledge of array manifold. We derive a new blind signal separation algorithm using the Natural gradient 〔1〕from an information-theoretic approach. The resulting algorithm has the Bussgang property which has been widely used in blind equalization 〔12〕. Extensive computer simulation results comfirm the validity and high performance of the proposed algorithm.

  • PDF

Optimization of Cutoff Shields in Projection Headlight Systems to Achieve High Intensity Gradient and Low Color Separation at the Cutoff Line

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.118-124
    • /
    • 2016
  • The shape and location of the cutoff shield in a projection-type headlight system were optimized by a ray-tracing technique. A shield based on a Petsval surface showed better cutoff characteristics than a flat or cylindrical shield, such as a sharp intensity gradient and less color separation at the cutoff line. Adjustment of the shield’s location between the reflector and the aspheric lens further improved its cutoff characteristics.

Separation of the Enantiomers of β-Blockers Using Brush Type Chiral Stationary Phase Derived from Conformationally Rigid α-Amino β-Lactam

  • Pirkle, William H.;Lee, Won-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.620-623
    • /
    • 2010
  • A brush type chiral stationary phase (CSP 2) derived from ${\alpha}$-amino ${\beta}$-lactam was prepared for the separation of the enantiomers of ${\beta}$-blockers. Compared to the CSP derived from ${\alpha}$-amino phosphonate (CSP 1), in general, the conformationally rigid CSP 2 showed greater scope and much enhanced enantioselectivity for the resolution of ${\beta}$-blockers. The effect of various salt additives on enantioseparation of ${\beta}$-blockers in the mobile phase was investigated. The unusual effect of temperature on the chromatographic behaviors was observed on CSP 2. It also afforded appreciable increases in enantioselectivity without significantly affecting resolution, as the column temperature was reduced.

DESIGN OF HELIX PITCH OF A CYCLONE TYPE OIL SEPARATOR FOR A COMPRESSOR (사이클론 방식 압축기 유분리기의 나선 피치 설계)

  • Jang, Seongil;Ahn, Joon
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.8-13
    • /
    • 2014
  • A series of numerical simulation has been carried out to study performance of a cyclone type oil separator, which is designed for the compressor of a refrigeration system. Working fluid is R22, which is a typical refrigerant, and mineral oil droplet is supplied. Pitch of the helix is considered as design parameters to make a compact separator. Depending on the helix pitch, separation efficiency varies from 97.5 to 99%, while predicted pressure drop ranges from 5 to 6.5 kPa. Considering both of the pressure drop and separation efficiency, helix pitch of the separator has been designed as 50 mm.

Stabilization of Zeolites Y For Separation by Gas Chromatography (GC분리에 의한 Zeolite Y 안정화)

  • Yim, Going;Heenan, Willian A.
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.41-45
    • /
    • 1995
  • A. partially decationized Y zeolite was pretreated under specific conditions. It was found this calcinated zeolite retains its separation properties for mixtures of the gases hydrogen, nitrogen, oxygen, carbon monoxide, and methane but has much lower affinity for water molecules than untreated, e.g., zeolites A type or X type. The observed effect is discussed on the basis of the results of adsorption measurements on the adsorption capacities, isotherms, and heats of adsorption.

  • PDF

Design of the Outlet-Port Tube of a Cyclone-Type Oil Separator for a Compressor (사이클론 방식 유분리기의 출구 튜브 설계)

  • Jang, Seongil;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.402-408
    • /
    • 2015
  • A series of numerical simulations have been carried out to study the performances of cyclone-type oil separators, which are designed for refrigeration-system compressors. The corresponding working fluid is R22, which is a typical refrigerant, whereby a mineral-oil droplet is supplied (Ed-highlight-My interpretation). The outlet-tube length in relation to the total chamber volume is considered a design parameter. Depending on the tube length, the separation efficiency varies from 98.7% to 99.3%, while the predicted pressure drop is between 5.1 kPa and 6.4 kPa. Considering both the pressure drop and separation efficiency, the length of the outlet-port tube of the separator is 152 mm.

Logistic regression model for major separation rate

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • This paper deals with logistic regression models for analysing separation rates from majors. The model building procedure shows how to incoporate the effects of some factors causing from three-way nested sampling scheme and discusses what type of characteristics as independent variables directly affecting the rates should be considered.

  • PDF