DOI QR코드

DOI QR Code

Separation of the Enantiomers of β-Blockers Using Brush Type Chiral Stationary Phase Derived from Conformationally Rigid α-Amino β-Lactam

  • Published : 2010.03.20

Abstract

A brush type chiral stationary phase (CSP 2) derived from ${\alpha}$-amino ${\beta}$-lactam was prepared for the separation of the enantiomers of ${\beta}$-blockers. Compared to the CSP derived from ${\alpha}$-amino phosphonate (CSP 1), in general, the conformationally rigid CSP 2 showed greater scope and much enhanced enantioselectivity for the resolution of ${\beta}$-blockers. The effect of various salt additives on enantioseparation of ${\beta}$-blockers in the mobile phase was investigated. The unusual effect of temperature on the chromatographic behaviors was observed on CSP 2. It also afforded appreciable increases in enantioselectivity without significantly affecting resolution, as the column temperature was reduced.

Keywords

References

  1. Davis, C. L. J. Chromatogr. 1990, 531, 131. https://doi.org/10.1016/S0378-4347(00)82283-5
  2. Sheldon, R. A. Chirotechnology: Industrial synthesis of optically active compounds; Marcel Dekker: New York, 1993.
  3. Francotte, E., Lindner, W., Eds., Chirality in Drug Research; Wiley-VCH: Weinheim, 2006.
  4. Pirkle, W. H.; Burke, J. A. J. Chromatogr. 1991, 557, 173. https://doi.org/10.1016/S0021-9673(01)87131-4
  5. Pirkle, W. H.; Welch, C. J.; Burke, J. A.; Lamm, B. Anal. Proc. 1992, 29, 225. https://doi.org/10.1039/ap9922900225
  6. Cass, Q. B.; Tiritan, M. E.; Calafatti, S. A.; Matlin, S. A. J. Liq. Chrom. & Rel. Tech. 1999, 22, 3091. https://doi.org/10.1081/JLC-100102077
  7. Aboul-Enein, H. Y.; Ali, I. J. Sep. Sci. 2002, 25, 851. https://doi.org/10.1002/1615-9314(20020901)25:13<851::AID-JSSC851>3.0.CO;2-M
  8. Zhang, D.; Li, F.; Kim, D. H.; Choi, H. J.; Hyun, M. H. J. Chromatogr. 2005, 1083, 89. https://doi.org/10.1016/j.chroma.2005.06.038
  9. Zhang, D.; Li, F.; Hyun, M. H. J. Liq. Chrom. & Rel. Tech. 2005, 28, 187. https://doi.org/10.1081/JLC-200041279
  10. Koppel, G. A. In Heterocyclic compounds: Small Ring Heterocycles; Hassner, A., Eds. Vol. 42, Chapter 2; Wiley: New York, 1983.
  11. Pirkle, W. H.; Deming, K. C.; Burke, J. A. Chirality 1991, 3, 183. https://doi.org/10.1002/chir.530030308
  12. Welch, C. J. J. Chromatogr A 1994, 666, 3. https://doi.org/10.1016/0021-9673(94)80367-6
  13. Pirkle, W. H.; Readnour, R. S. Chromatographia 1991, 31, 129. https://doi.org/10.1007/BF02274559
  14. Pirkle, W. H.; Hyun, M. H.; Bank, G. A. J. Chromatogr. 1984, 316, 585. https://doi.org/10.1016/S0021-9673(00)96185-5
  15. Pirkle, W. H.; Murray, P. G.; Burke, J. A. J. Chromatogr. 1993, 641, 21. https://doi.org/10.1016/0021-9673(93)83454-Z

Cited by

  1. Small Molecules as Chromatographic Tools for HPLC Enantiomeric Resolution: Pirkle-Type Chiral Stationary Phases Evolution vol.76, pp.15-16, 2013, https://doi.org/10.1007/s10337-013-2469-8
  2. Preparation and characterization of tripeptide chiral stationary phases with varying amino acid sequences and terminal groups vol.7, pp.9, 2015, https://doi.org/10.1039/C5AY00691K
  3. Chiral Stationary Phases Based on Small Molecules: An Update of the Last 17 Years pp.1542-2127, 2017, https://doi.org/10.1080/15422119.2017.1326939
  4. Recent applications in chiral high performance liquid chromatography: A review vol.706, pp.2, 2010, https://doi.org/10.1016/j.aca.2011.08.038
  5. Progress in the Enantioseparation of β-Blockers by Chromatographic Methods vol.26, pp.2, 2010, https://doi.org/10.3390/molecules26020468
  6. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects vol.26, pp.4, 2010, https://doi.org/10.3390/molecules26041145