• Title/Summary/Keyword: separation and purification

Search Result 354, Processing Time 0.029 seconds

Separation and Purification of Endo-polygalacturonase from Korean Jujube (한국산 대추로부터 Endo-polygalacturonase 분리 및 정제)

  • Choi, Cheong;Chun, Sung-Sook;Cho, Young-Je;Woo, Heui-Seob;Kim, Tae-Wan;Heo, Young-Hoon
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.243-247
    • /
    • 1994
  • Endo-polygalacturonase was purified from Jujube. The purification procedures included DEAE-cellulose ion exchange chromatography and gel filtration on Sephdex G-100. Enzyme was purified as a single protein band and purification yield was about 6%. When the purified enzyme was applied to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight was estimated about 19,000. Purified enzyme formed hexagonal board type.

  • PDF

Separation of Lentil Lectin Using Free-Flow Electrophoresis (자유유동 전기이동을 이용한 Lentil Lectin의 분리)

  • 류화원;이동일장호남
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.115-121
    • /
    • 1994
  • A Purification device with 30-channel free-flow electrophoresis was assembled to treat samples of 240m1 volume for purification of lentil lectin (LcH) from lentil seeds with no impurities in a silverstained PAGIEF gel. HEPES(50mM)-Ttis(50mM), Cycloserine(50mM)-urea(3M), Histidine(50mM)-urea(3M) were used as ampholytea among which Histidine(50mM)-urea(3M) (pI 7.65) was found best in resolution. LcH is known to be present in the form of LcH-A, LcH-B and the complex of the two. The complex, however, disappeared when urea was added in the ampholytes, which suggested that the complete purification of two isolectins is possible using the present multistep purificaton device.

  • PDF

Biological Activities and Analysis of Carotenoids in Plants (Carotenoid의 생리활성과 함량분석)

  • 김정봉;하선화;이종렬;김행훈;윤상홍;김용환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.72-78
    • /
    • 2003
  • Carotenoids are the major pigment of pepper (Capsicum annuum) and tomato (Lycopersicon esulentum) which are very important foods in Korea. However the analysis of carotenoids is quite complicated because of their diversity and the presence of cis-trans isomeric forms of these compounds. The objective of this review is to collect the achievements on the field of the chromatographic separation of carotenoids in food and some vegetables, to describe and critically evaluate the techniques, And to compare the benefits and shortcomings of the various chromatographic methods such as adsorption and reversed-phase HPLC and thin-layer chromatography. HPLC equipped with ultra-violet or photodiode array detection is most often employed in routine use for the analysis of carotenoids. Here, the method to analyze carotenoids by HPLC separation after solvent extration and purification from pepper powder samples done in our laboratory is also mentioned.

Measurement and Correlation of Hinokitiol Solubility in Supercritical Carbon dioxide (초임계 이산화탄소에서 히노키치올의 용해도 측정과 예측)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.489-492
    • /
    • 2011
  • Supercritical fluid technology has been an alternative for purification and separation of biological compounds in cosmetic, food, and pharmaceutical products. Solubility information of biological compounds in supercritical fluids is essential for choosing a supercritical fluid processes. The equilibrium solubility of hinokitiol was measured in supercritical carbon dioxide with a static method in the pressure range from 8 to 40 MPa and at temperatures equal to 313.2, 323.2 and 333.2 K. The experimental data were correlated well by Peng.Robinson equation of state and quasi-chemical nonrandom lattice fluid model.

  • PDF

Separation of Highly Purified Antimicrobial Lysozyme Using Ultrafiltration and Characteristics of Membrane Fouling (한외여과 공정을 이용한 고순도 향균 Lysozyme 의 분리 및 막 침착 특성)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.458-464
    • /
    • 1999
  • The value of lysozyme as a natural food preservative is continuously increased due to its unique antimicrobial activity. To determine the optimum separation concentration among the various hen egg white protein (HEWP) concentrations (0.25, 0.5, 1.0, w/v), protein concentrations, lysozyme concentrations, specific activities (SA), and purification factors of prefiltered solution (PFS) and PM30 permeate solution (PMS) were compared. The purity of lysozyme separated at each step was analyzed and confirmed by gel permeation chromatography and electrophoresis. The fouling deposits on membrane were observed by SEM. The non-enzymatic proteins were removed over 99% by ultrafiltration (UF). The increased feed concentration did not contribute to the increase of SA. SA of PMS was 18 to 31 times higher than that of PFS. The optimum feed concentration was decided as 0.25% based on SA and purification factor. The non-enzymatic region of gel chromatogram was proved to be ovalbumin. The thickness of deposit on the UF membrane was approximately $0.9{\mu}m$ and removed by cleaning with 0.1 N NaOH. Therefore, UF using PM30 membrane was very effective to separate the antimicrobial lysozyme from various HEWPs.

  • PDF

Quantitative Analysis of Eleutherosides B and E Using HPLC-ESI/MS (HPLC-ESI/MS를 이용한 Eleutheroside B와 E의 정량)

  • Choi, Young-Hae;Kim, Jin-Woong
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.2 s.129
    • /
    • pp.88-91
    • /
    • 2002
  • Liquid-chromatography coupled with electrospray-ion trap mass spectrometry was applied to the analysis of the eleutherosides B and E in the Eleutherococcus senticosus cortexes. The optimum ESI/MS results were obtained in the positive ion mode using extracted ion chromatogram targeting Na-adduct molecular ion of each compound. This method allowed rapid and simple gradient separation of underivatized eleutherosides B and E without pre-purification steps at very low concentration.

Development of an exclusive column method for 82Sr/82Rb generator using a 100 MeV proton linear accelerator of KOMAC

  • Kye-Ryung Kim;Yeong Su Ha;Sang-Pil Yoon;Yeon-ji Lee;Yong-Sub Cho;Hyeongi Kim;Sang-Jin Han;Jung Young Kim;Kyo Chul Lee;Jin Su Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • 82Sr for 82Rb generator was produced through the irradiation of the proton beam on the nat.RbCI target at the target irradiation facility installed at the end of the Rl-dedicated beamline of the 100 MeV proton linear accelerator of KOMAC (Korea Multi-purpose Accelerator Complex). The average current of the proton beam was 1.2 µA for irradiation time of 150 min. For the separation and purification of the 82Sr from nat.RbCI irradiated, Chelex-100 resin was used. The activities of 82Sr in the irradiated nat.RbCI target solution and after purification were 45.29 µCi and 43.4 µCi, respectively. The separation and purification yield was 95.8%. As an adsorbent to be filled in the generator for 82Sr adsorption hydrous tin oxide was selected. The adsorption yield of 82Sr into the generator adsorbent was > 99 %, and the total amount of 82Sr adsorbed to the generator was 21.6 µCi as of the day of the 82Rb elution experiment. When the elution amount was 22 mL, the maximum82Rb elution yield was 93.3%, and the elution yield increased as the flow rate increased. After the eluted 82Rb was filled in the correction phantom of the small PET for animals, a PET image was taken. The image scan time was set to 5 min, and the phantom PET image was successfully obtained. As results of impurity analysis on eluted 82Rb using ICP-MS, nat.Rb stable isotopes that compete in vivo of 82Rb were identified as undetected levels and were determined to be No-Carrier-Added (NCA).

Assessing the Dehydration Pervaporation Performance for Purification of Industrially Significant 1, 2 Hexanediol/Water Mixtures Using Crosslinked PVA Membrane (가교된 PVA 분리막을 이용한 1, 2 hexanediol/water 혼합물의 투과증발 탈수 특성 연구)

  • Shivshankar Chaudhari;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.369-376
    • /
    • 2023
  • In this study, the alternative to the energy-intensive conventional vacuum distillation process, an eco-friendly and energy-efficient pervaporation separation was employed in 1,2 hexane diol/water (HDO/water) mixture. The crosslinked PVA-glutaraldehyde was coated inside the alumina hollow fiber membrane (Al-HF). In the HDO/IPA pervaporation separation, optimization of the membrane concerning PVA/GA ratio, curing temperature, and pervaporation operating condition were performed. In the long-term stability test, the sustainable pervaporation separation performance giving flux in the range of 1.90~2.16 kg/m2h, and water content in permeate was higher than 99.5% (separation factor = 68) was obtained from the PVA/GA (molar ratio = 0.08, curing temperature = 80℃) coated Al-HF membrane from HDO/water (25/75, w/w, %) mixture at 40℃. Therefore, this work provides potential and inspiration for PVA-based membranes to mitigate excessive energy requirements in HDO/water separation by pervaporation.

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF