• Title/Summary/Keyword: sensory feedback

Search Result 100, Processing Time 0.02 seconds

A Vibrotactile Display for Hand-held Devices and Its Preferable Pattern Generation Method (모바일 기기를 위한 진동촉각 디스플레이와 선호하는 패턴 생성방법)

  • Yang, Gi-Hun;Jin, Yeonsub;Kang, Sungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.795-800
    • /
    • 2014
  • In this paper, a vibrotactile pad system, T-mobile, is developed to provide vibrotactile cues for hand-held devices. A grooved and slim design is adapted to the back-side plane of the T-mobile, and the contact part consists of 12 vibrotactile panels which can operate independently and separately. To be isolated among vibrotactile actuators, the surface of the cover is divided into several pieces. Each vibrating module consists of a linear resonant actuator, a section of covering surface, and a vibration isolator. In order to provide spatial and directional information, sensory saltation and phantom sensation are applied to the T-mobile. To evaluate the developed device, two experiments were conducted to test whether directional information and spatial information can be successfully displayed by the device. Additionally, in order to find optimal stimulation by sensory saltation, an empirical test was conducted. As a result, spatial and directional information would be useful for displaying intuitive information for hand-held devices with vibrotactile feedback and reasonable near-optimal value for sensory saltation was obtained.

The Measurement of the Magnitude of Sensory Perception and Displeasure to the Vibration Stimuli applied on Forearm in upper Limb Amputees (진동자극에 대한 상지 절단자의 전완부 감각 인지 크기와 불쾌감 측정)

  • Kim, Sol-Bi;Chang, Yun-Hee;Kim, Shin-Ki;Kim, Gyoo-Suk;Mun, Mu-Sung;Bae, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.705-710
    • /
    • 2012
  • Research involving discomfort or pain related to haptic vibratory stimulation the for prosthesis users of myoelectrical hand is very lacking. Our objective of this study was to evaluate the displeasure and sensitivity of areas in forearm using vibration stimulation system between upper limb amputees and non-amputees. Twenty transradial amputees and forty non-amputees (20 youth, 20 elderly) were involved. We set up custom-made vibration stimulation system including eight actuators (4 medial parts and 4 lateral parts) and GUI-based acquisition system, to investigate changes of residual somatosensory sensibility and displeasure at proximal 25% of forearm. Eight vibration actuators were attached to the circumference of proximal 25% point of forearm at regular intervals. Sensitivity tests were used to stimulate the 120Hz and discomfort experiment was used to 37 ~ 223Hz. The subjective responses were evaluated by 10 point scale. The results showed that both groups were similar in sensitive areas. Response at around of radius was most sensitive than other areas in all subjects. Elderly group do not appear discomfort of vibrotactile; however, youth group and amputee presented discomfort of vibrotactile. Prosthesis with a vibrotactile feedback system should be developed considering the sensitivity. Furthermore, Future studies should investigate the scope of application of that principle.

Effects of real-time feedback training on weight shifting during golf swinging on golf performance in amateur golfers

  • Hwang, Ji-Hyun;Choi, Ho-Suk;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effects of real-time visual feedback weight shift training during golf swinging on golf performance. Design: Repeated-measures crossover design. Methods: Twenty-sixth amateur golfers were enrolled and randomly divided into two groups: The golf swing training with real-time feedback on weight shift (experimental group) swing training on the Wii balance board (WBB) by viewing the center of pressure (COP) trajectory on the WBB. All participants were assigned to the experimental group and the control group. The general golf swing training group (control group) performed on the ground. The golf performance was measured using a high-speed 3-dimensional camera sensor which analyses the shot distance, ball velocity, vertical launch angle, horizontal launch angle, back spin velocity and side spin velocity. The COP trajectory was assessed during 10 practice sessions and the mean was used. The golf performance measurement was repeated three times and its mean value was used. The assessment and training were performed at 24-hour intervals. Results: After training sessions, the change in shot distance, ball velocity, and horizontal launch angle pre- and post-training were significantly different when using the driver and iron clubs in the experimental group (p<0.05). The interaction time${\times}$group and time${\times}$club were not significant for all variables. Conclusions: In this study, real-time feedback training using real-time feedback on weight shifting improves golf shot distance and accuracy, which will be effective in increasing golf performance. In addition, it can be used as an index for golf player ability.

Development of Home Training System with Self-Controlled Feedback for Stroke Patients (키넥트 센서를 이용한 자기통제 피드백이 가능한 가정용 훈련프로그램 개발)

  • Kim, Chang Geol;Song, Byung Seop
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • Almost of stroke patients who experience aftereffects such as motor, sensory and cognitive disorders have to take some rehabilitation therapies. It is known that the consistent training for rehabilitation therapy in their home is more effective than rehabilitation therapy in hospital. A few home training programs were developed but these programs don't give any appropriate feedback messages to the client. Therefore, we developed a home training program which can provide appropriate feedback message to the clients using the Kinect sensor which can analyze user's 3-D dimensional motion. With this development, the client can obtain some feedback messages such as the knowledges of performance, results and self-controlled feedback. The program will be more effective than any existing programs.

A Systematic Review of Task-Oriented Training to Improve the Physical Function and Activities of Daily of Living of Children With Cerebral Palsy (뇌성마비 아동의 신체기능 및 일상생활 향상을 위해 적용된 과제 중심 훈련의 체계적 고찰)

  • Bak, Ah-Ream;Lee, Jae-Shin
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.19 no.1
    • /
    • pp.54-68
    • /
    • 2021
  • Objective : This study aimed to analyze and classify the task-oriented training methods used to improve the daily lives of children with cerebral palsy. Methods : The search period from January 2008 to August 2020, and the CINAHL, MEDLINE and PubMed was databases were used. A total of 18 studies was selected, and the PICO method was applied to conduct the systematic review. The training methods were then classified according to task, practice, and feedback as strategies to learn or to exercise control based on prior research. Results : Of the selected studies, 13 reported significant results in the area of motor skills, two of which related to Activities of Daily Living. Discrete and closed were the most common forms of task, and the most used types of practice were whole, part, and blocked, in that order. Finally, feedback was not specifically provided in most studies, followed by extrinsic feedback. Conclusion : Based on this review, task-oriented training for children with cerebral palsy can be made more effective in clinical practice in the future through the systematic selection of techniques that promote exercise control and the presentation of specific methods.

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

Research of Stable Grapsing in Field Robot (Field-Robot의 안정적 파지운동 제어에 관한 연구)

  • 박경택;심재군;한현용;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.492-495
    • /
    • 1997
  • This paper aims to derive a mathematical model of the dynamics of handling task in field robot which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraints of tight area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of contact-area are discussed. Finally, it is shown that even in the simplest case of dual single D.O.F. manipulators there exists a sensory feedback from sensing data of he rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that he object is of rectangular shape and motion is confined to a horizontal

  • PDF

Near-body Interaction Enhancement with Distance Perception Matching in Immersive Virtual Environment

  • Yang, Ungyeon;Kim, Nam-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2021
  • As recent virtual reality technologies provide a more natural three-dimensional interactive environment, users naturally learn to explore space and interact with synthetic objects. The virtual reality researcher develops a technique that realizes realistic sensory feedback to get appropriate feedback to sense input behavior. Although much recent virtual reality research works extensively consider the human factor, it is not easy to adapt to all new virtual environment contents. Among many human factors, distance perception has been treated as very important in virtual environment interaction accuracy. We study the experiential virtual environment with the feature of the virtual object connected with the real object. We divide the three-dimensional interaction, in which distance perception and behavior have a significant influence, into two types (whole-body movement and direct manipulation) and analyze the real and virtual visual distance perception heterogeneity phenomenon. Also, we propose a statistical correction method that can reduce a near-body movement and manipulation error when changing the interaction location and report the experiment results proving its effectiveness.

Proprioception, the regulator of motor function

  • Moon, Kyeong Min;Kim, Jimin;Seong, Yurim;Suh, Byung-Chang;Kang, KyeongJin;Choe, Han Kyoung;Kim, Kyuhyung
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.393-402
    • /
    • 2021
  • In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.

The Development Of Union Balance Sensory Measurement And Diagnosis System Using Virtual Reality (가상현실을 이용한 통합 평형감각 측정 및 진단 시스템의 개발)

  • 김종윤;송철규;김남균
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.239-243
    • /
    • 2001
  • 최근 각종 질병과 사고로 평형감각에 이상이 있는 환자가 증가하고 있다. 이들의 빠른 사회로의 환원을 위해서는 평형감각을 회복시킬 수 있는 효율적인 재활훈련이 필요하다. 하지만 기존 장비들은 근력을 길러주거나 특정감각기관만을 훈련시켜주는 정도의 재활만이 가능하다. 따라서 본 연구에서는 가상현실기술과 자전거를 이용하여 평형감각 실조환자의 진단 및 시각, 전정감각, 체성감각 등을 효율적으로 진단하고 자극, 훈련시킬 수 있는 bike simulator system을 개발하였다. 그리고 본 시스템이 재활훈련에 유용한지 실험 검토하였다. 실험결과 본 시스템을 통한 반복실험결과 COP의 값을 통하여 평형감각의 정량적 측정, 분석이 가능하였고, 훈련시 COP를 실시간으로 visual feedback함으로서 평형감각의 조절과 balance의 유지기능이 향상함을 확인하였고 본 시스템이 통합평형감각 측정 및 훈련용 재활장비로 유용함을 알 수 있었다.

  • PDF