• 제목/요약/키워드: sensorless of PMSM

검색결과 143건 처리시간 0.032초

초고속용 PMSM 센서리스 속도제어시의 기동정지방법 (Starting and Stopping Method for the Sensorless Speed Control of a Super-High Speed PMSM)

  • 이진우;바이사;류지수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.103-104
    • /
    • 2011
  • This paper suggests a new starting and stopping method appropriate for the sensorless PMSM drive with air bearings. The proposed method based on the sensorless control algorithm of PMSM uses additional d-axis current control to cope with the limitation of the adopted back-emf based sensorless algorithm in the low speed region. The experimental results show that the proposed method drives appropriately the PMSM with air bearings.

  • PDF

범용 마이크로콘트롤러를 이용한 PMSM 센서리스 제어 (PMSM Sensorless Control using a General-Purpose Microcontroller)

  • 강봉우;나재두;김영석
    • 전기학회논문지P
    • /
    • 제60권4호
    • /
    • pp.227-235
    • /
    • 2011
  • This paper describes a PMSM control algorithm for realizing a low-cost motor drive system using a general purpose microcontroller. The proposed sensorless algorithm consists of the current observer and the sensorless scheme based on instantaneous reactive power. Also the control board system is not the high-cost DSP(digital signal processor) system but the general purpose microcontroller and it allows to reduce the unit cost of the motor system. However the clock frequency of the proposed microcontroller is one-fifths for the clock frequency of the DSP. In addition, the switching frequency must be selected as the lower frequency because of complex mathematic modeling of the sensorless algorithm. the low switching frequency augments the noise of the motor and might make accurate speed control impossible. Thus this paper proposes the optimization method to supplement the drawback of the general purpose microcontroller and the usefulness of the proposed method is verified through the experiment.

Sensorless Control of PMSM by a Four-Switch Inverter with Compensation of Voltage Distortion and Adjustment of Position Estimation Gain

  • Kim, Byeong-Han;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.100-109
    • /
    • 2017
  • This paper proposes performance improvement schemes for sensorless PMSM control drive using a four-switch three-phase inverter (so-called B4 inverter). In the proposed scheme, the back-EMF estimation-based sensorless control algorithm is used to control the brushless PMSM without position sensors. In order to have stable operation, this paper presents a gain adjustment scheme that compensates the reduction of stable sensorless operation range as long as the rotor speed increases. In B4 topology, the center point of dc-link capacitors is connected to 3-phase load, and it is prone to have the load current distortion. Hence, to mitigate this problem, a distortion compensation scheme by modifying voltage commands using measured dc-link potentials is proposed in this paper. The validity of the proposed method is evaluated by simulations and experiments.

이중전압원 분리를 이용한 PMSM의 센서리스 제어 (A Sensorless PMSM Control Using the Separation of Two Voltage Source)

  • Jin-Woo Ahn;Sung-Jun Park;Dong-Hee Lee
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권1호
    • /
    • pp.1-7
    • /
    • 2004
  • This paper presents a sensorless control strategy of a PMSM(Permanent Magnet Sycchoronous Motor). This method is very simple to compute the position angle of a rotor. A principle and a practical solution are described. A sensorless control algorithm is proposed to remove a mechanical position sensor. The theory is based on the superposition principle. The state equation of a motor is divided into two conditions: one is the state equation of exciting voltage and phase current in a constraint, the other is the state equation of back EMF(Electromotive Force) and phase current in a short circuit. Based on the analysis, short circuit current by back EMF is computed and then the information of position angle is calculated. The proposed method is verified by experimental results.

영구자석 동기전동기의 강인한 센서리스 속도제어 (Robust Speed Control of Sensorless PMSM)

  • 이동희;손문경;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.112-114
    • /
    • 1997
  • Recently sensorless PMSM is much studied for the industrial applications and home appliances. Most of sensorless algorithm are based on the motor equations of which coefficients are motor parameters. However, uncertainty of motor parameter effects the accuracy of speed estimation of PMSM. This paper investigates the robust speed control of sensorless PMSM which has robustness to parameter uncertainty or variation. The parameter compensation is performed through PI control of the speed error between the estimated speed and the real speed obtained from the measured current. The proposed algorithm is verified through the experiment.

  • PDF

센서리스 제어 기법에 의해 보완된 두 개의 구형파 홀센서를 이용한 PMSM 제어 알고리즘 (Control Algorithm for PMSM using Rectangular Two Hall Sensors Compensated by Sensorless Control Method)

  • 이정효;이택기;김영렬;원충연
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.40-47
    • /
    • 2012
  • The PMSM position sensor using two rectangular hall sensors can restrictively acquire the 90[$^{\circ}$] position information of rotor according to electrical angle. Thus, the control method using this position sensor cannot react properly to a rapid load torque change. On the other hand, even though a sensorless method has the advantage of acquiring instantaneous rotor position information, the accuracy of position sensor can be determined by the gain value of estimator. This paper suggests a robust speed control method on torque fluctuation condition, which combines low cost two rectangular hall sensors and sensorless control method.

EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법 (Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems)

  • 이영재;박영수;이교범
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.

중첩의 정리를 이용한 PMSM의 센서리스제어에 관한 연구 (Study On the Sensorless PMSM Control Using the Superposition Theory)

  • 박성준;박한웅;김대웅;백승면;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권1호
    • /
    • pp.5-14
    • /
    • 2002
  • This study presents a solution to control a Permanent Magnet Synchronous Motor without sensors based on the superposition principle. Because the proposed method of sensorless theory is very simple to compute the estimated angle, computing time to estimate the angle is shorter than other sensorless method. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased efficiency. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of the digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in PMSM control applications whereby the focus will be on the new controller without sensors and its applications.

고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어 (Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL)

  • 김민호;양오
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.