• Title/Summary/Keyword: sensorless drive

Search Result 327, Processing Time 0.027 seconds

A Design of Robust Speed Controller for Speed Sensorless SFO System of an Induction Motor (속도센서가 없는 유도전동기의 고정자자속 기준제어를 위한 강인한 속도제어기 설계)

  • 김대일;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.531-536
    • /
    • 2002
  • This paper investigates the problem of the speed controller of conventional speed sensorless stator flux-oriented(SFO) induction motor drive, and proposes a robust speed controller to solve the conventional problem. In the proposed method, a robust speed controller for speed sensorless SFO system Is designed by taking advantage of disturbance torque observer and using feedforward.

Starting and Stopping Method for the Sensorless Speed Control of a Super-High Speed PMSM (초고속용 PMSM 센서리스 속도제어시의 기동정지방법)

  • Lee, Jin-Woo;BAYASGALAN, D;Ryu, Ji-Su
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.103-104
    • /
    • 2011
  • This paper suggests a new starting and stopping method appropriate for the sensorless PMSM drive with air bearings. The proposed method based on the sensorless control algorithm of PMSM uses additional d-axis current control to cope with the limitation of the adopted back-emf based sensorless algorithm in the low speed region. The experimental results show that the proposed method drives appropriately the PMSM with air bearings.

  • PDF

Resonance Suppression using Sensorless Control of Dual SPMSMs Fed by Single Inverter

  • Eom, Jae-Boo;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2376-2384
    • /
    • 2018
  • To reduce the size and cost of motor driving systems, several methods for driving multiple parallel-connected motors with a single inverter have been proposed. However, dual PMSMs driven by a single inverter, unlike induction motors, have a problem with instability due to system resonance caused by disturbances such as load imbalance and tolerances between two motors. To drive dual SPMSMs fed by a single inverter, this paper proposes an active damping algorithm to effectively suppress resonance by using one-sided sensorless speed control and position difference estimation. By deriving rotor position difference from d-q current differences between two motors, the proposed method is affected less by position difference estimation errors and is simpler than dual sensorless position estimation.

Position Sensorless Control of BLDC Motors Based on Global Fast Terminal Sliding Mode Observer

  • Wang, Xiaoyuan;Fu, Tao;Wang, Xiaoguang
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1559-1566
    • /
    • 2015
  • The brushless DC motor (BLDCM) has many advantages. As a result, it is widely used in electric vehicle (EV) drive systems. To improve the reliability of the motor control system, a position sensorless control strategy based on a sliding mode observer (SMO) is proposed. The global fast terminal sliding mode observer (GFTSMO) is proposed to enhance the control performance of the SMO control system. The advantages of the linear sliding mode and the nonsingular terminal sliding mode (NTSM) are combined in the control strategy. The convergence speed of the system state is enhanced. The motor commutation point is obtained with the observation of the back EMF, and the instantaneous torque value of the motor is calculated. Therefore, the position sensorless control of the BLDCM is realized. Experimental results show that the proposed control strategy can improve the convergence speed, dynamic characteristics and robustness of the system.

Speed and Position Sensorless Control of SPMSM with Adaptive Observer (적응 관측기에 의한 SPMSM의 속도 및 위치 센서리스 제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Cha, Young-Doo;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • This paper is proposed the speed and position sensorless control of surface permanent magnet synchronous motor(SPMSM) with adaptive fuzzy and observer. A adaptive fuzzy controller is applied for speed control of SPMSM drive. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d - q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

Inductance Reasoning Method for Sensorless Control of an SRM (SRM의 센서리스 제어를 위한 인덕턴스 추론기법)

  • 안진우;박성준;김태형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.427-434
    • /
    • 2003
  • This paper describes a new method of detecting rotor position in switched reluctance motor(SRM), Some strategies of position sensorless control methods for the motor include the measurement of phase current and applied pulse voltage in an unexcited phase. The principle of the estimation of a rotor position is based on the detection of inductance by pulse currents. This sensorless method is very simple to compute rotor position estimation and gives efficient control of drive system. Suggested method is verified by some experimental tests.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation (위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선)

  • Park, Gui-Yeol;Hwang, Yo-Han;Heo, Nam;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.