• Title/Summary/Keyword: sensor-sensitivity

Search Result 1,911, Processing Time 0.029 seconds

Research for Design and Characteristic Interpretation of Capacitive Pressure Sensor Structure (용량형 압력 센서의 설계 및 특성해석에 대한 기초적 연구)

  • Park, Chang Yong;Kweon, Hyun Kyu;Zhao, Zhi Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, a new capacitive pressure sensor has been proposed for a displacement measurement. The new sensor is mainly composed of a gap of $5{\mu}m$ and a notch of $1{\mu}m$. And the sensor has the performance as the high sensitivity and capacitance compared with a commercial capacitive sensor. Therefore, the advantages of the new capacitive pressure sensor are good sensitivity in normal range, mechanically robust and large overload protection. The analytical model is induced for confirming the performance of the proposed sensor. In addition, FEM (finite elements method) simulation has been performed to verify the analytical model. Firstly, the displacement characteristics of diaphragm membrane were simulated by the analytical model and FEM in the case of different structure and materials. At last, through this analysis, these simulation results can be predicted the change of the performance when the device parameters are varied. And it is used as a design tool to achieve at a set of performance we desired.

Sound Pressure Sensitivity Variation of the Hollow Cylinder Type Sagnac Fiber Optic Sensor According to the Mandrel Install Direction and Its Material (Sagnac형 광섬유 센서를 이용한 중공 원통형 맨드릴의 재료 및 설치 방향에 따른 음압 감지 변화 연구)

  • Lee, Jong-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.626-633
    • /
    • 2012
  • In this paper, sound pressure sensitivity of the fiber optic acoustic sensor according to sensor direction and mandrel material were investigated experimentally. Three different directions were selected as stand, lay, and hole. Hollow cylinder type mandrel dimension is 30 mm in outer diameter, 45 mm in length, and 2 mm in thickness, and about 50 m optical fibers were wounded on the surface of the mandrel. Non-directional sound speaker was used as a sound source. Sagnac interferometer and single mode fiber, a laser with 1,550 nm in wavelength, $2{\times}2$ coupler were used. Based on the experimental results, lay direction's sensitivity is the highest in the frequency range of 2 kHz~4 kHz. 'PTFE+carbon' material is more sensitive than PTFE in the frequency range of 5 kHz~20 kHz. Sound pressure detection sensitivity depends on the mandrel direction and material under certain frequency.

Model updating using the feedback exciter : The decision of sensor location & feedback gain (궤환 제어를 이용한 모델 개선법 : 측정 센서 위치와 궤환 이득값 설정)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.802-807
    • /
    • 2002
  • The updating of FE model to match it with the experimental results needs the modal information. There are two cases where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. The feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains can deal with these problems as the new modal data from the closed loop system generate more constraints the updating parameters should obey. The new modal data from the closed loop system should be different to enhance the condition of the modal sensitivity matrix. In this research, a guide for the selection of the sensor locations and the decision of the corresponding output feedback gains is proposed. This method is based on the sensitivity of the modal data with respect to the feedback gains. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the modal sensitivity matrix can be modified and consequently the error contamination in updating parameters are reduced.

  • PDF

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.

An Experimental Study on the Effect of Sensor Line Number on the Reactivity Characteristic of Corrosion Sensor Reactive with Chloride Ion to Immigrate into Concrete (콘크리트내로 침투하는 염소이온 반응형 부식센서의 응답특성에 미치는 센서 세선 수의 영향에 관한 실험적 연구)

  • Lee, Hyun-Seok;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.143-152
    • /
    • 2014
  • In this study, the sensor response and sensitivity is experimented and analyzed quantitatively by the line numbers of chlorine ion reaction type corrosion sensor that is developed. The sensor response of the developed corrosion sensor is verified with properties of chlorine ion. The multilineal sensor is shown a large resistance change more than the single line sensor by damage of the sensor. And, the resistance change of sensor is as large as high concentration of NaCl aqueous solution, the sensitivity of multilineal sensor is higher than single line sensor's, and the depth of sensor's location is as large as the increasing of resistance change time (cycle). These results suggest that, the developed corrosion sensor could sense corrosion reaction, sensor sensitivity and change of resistance for chloride ion. Especially, It was judged that 7 line sensor was the most superior for monitoring chloride ion immigration into concrete.

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

Gas Sensing Characteristics of Catalyst-added $In_2O_3$ Thick Film for Detecting $NO_x$ of High Concentration (고농도 $NO_x$ 감지용 $In_2O_3$ 후막가스센서의 Al, Ru 및 $SnO_2$ 첨가에 의한 특성 향상)

  • 박종현;김동현;이종영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1322-1326
    • /
    • 1999
  • In2O3 thick film gas sensor for detecting NOx gas of high concentration was fabricated by a screen printing technique. This work focussed on investigation of the change of sensitivity to NOx gas with firing temperatures of sensing layer and on improvement of the sensitivity by adding catalysts such as Al,. Ru, and SnO2 The cross sensitivites of sensor to CO, H2, CH4 and i-C4H10 gases were also examined under NO2 gas concentration of 200ppm Pure In2O3 gas sensor prepared at a firing temperature of 50$0^{\circ}C$ showed a maximum sensitivity to NOx gas at the operating temperature of 40$0^{\circ}C$ Al(0.004 wt%)-In2O3 sensor largely improved the sensitivities to both NO2 and NO gas and showed a superior selectivity compared with other gas sensors.

  • PDF

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF