• Title/Summary/Keyword: sensor unit

Search Result 939, Processing Time 0.03 seconds

The Design of an Automatic System for Dairy Cattle Breeding I - The Choice of Temperature Sensor for Body Temperature Measuring - (낙농의 자동화 시스템 구성 I - 체온 감지 온도센서의 선정 -)

  • 김형주;정길도;한병성;김용준;김동원;김명순
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper the automatic system for dairy cattle has been desisted such as body temperature measuring unit, feed supplying unit and temperature control unit. Since e disease is strongly related to the body temperature of cattle, early detection of the abnormal temperature would prevent the severe problems which nay occur in dairy farms. An electronic component AD590J is used as temperature sensor for the system, The device is highly robust against the noise since the output signal is the current so it can be applied to a long distance sensing The resolution of signal is 0.1$^{\circ}C$ and the current is 10㎷ Also 12-bit A/D converter is desisted fir interfacing the sensor with a one-chip microprocessor. A temperature measuring experiment using the developed system has been done for measuring the temperature of human beings and the system was proven to be useful for measuring the body temperature of dairy cattle properly. A geared AC motor is used for the feed supplying unit The heater and fm are used as temperature control unit. The feed supplying unit and temperature control unit are well operating in the laboratory experiment.

  • PDF

Development of a Sensor Calibration to Enhance the Performance of a Non-contact Laser Optical Sensor Unit (비접촉 레이저 광센서의 성능 향상을 위한 센서보정에 관한 연구)

  • Seo, Pyeong-Won;Ryu, Young-Kee;Oh, Choon-Suk;Byun, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.579-581
    • /
    • 2006
  • Flat panel image display devices such as TFT LCD and PDP have required more large area and high quality control components. To control the qualities of the components, measurements of the flatness of a plate glass has been required. In order to measure the shape of the specular objects, Non-Contact Optical Sensor using Hologram laser unit was proposed. The sensor has a optical system that is composed of a Hologram laser and objective lens. The temperature of the sensor body is controlled by TEC(Thermoelectric Cooler) to maintain the same wavelength of the diode laser. In this research, we proposed the calibration scheme to make sensor real time measuring sensor. From the experimental results we see that the proposed sensor unit can measure the position of the glass surface in rial time.

  • PDF

Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals (보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지)

  • Jang, Eun-Hye;Chun, Byung-Tae;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.294-301
    • /
    • 2010
  • In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

An Experimental Study on the Evaluation of Unit-Water Content of High Strength Concrete by Frequency Domain Reflectometry Sensor (고주파수분센서를 통한 고강도 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Yu, Seung-Hwan;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.173-174
    • /
    • 2023
  • In this study, unit-water content was measured using a frequency domain reflecometry(FDR) sensor that complements the problems of the existing unit-water content measurement method to evaluate the unit-water content affecting the workability, durability, and quality of high strength concrete. The experiment used the unit-water content of high strength concrete as a variable, and the accuracy and probability distribution of the unit-water content measured through deep learning were analyzed for the output value output through the FDR sensor. In the case of the unit-water content predicted by deep learning analysis, a high accuracy and high distribution of more than 93% were found within the error range of ± 10 kg/m3. In the future, research is needed to secure high reliability by utilizing data obtained through experiments with various variables.

  • PDF

Development of Optimal Sensor for Diagnostic System in Overhead Distribution Power Lines (가공 배전선로 진단시스템을 위한 최적 센서 개발)

  • Lee, Kyeong-Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.670-675
    • /
    • 2015
  • Degradation diagnosis of cable is one of major issues for operation and maintenance in overhead distribution power lines. The diagnostic system for overhead power lines is composed of three parts in functional aspect - a travelling unit, a sensing unit and a communication unit. Among them, sensor detects the defects such as corrosion and disconnecting of power lines. Performance of sensor is very important, and besides, the size and structure of sensor is restricted for installation to small and lightweight diagnostic system. This paper suggests an optimal eddy current sensor best suit for small and lightweight diagnostic system in consideration of detecting performance, size and ease of installation and so on. Proposed sensor has been designed by Drum core structure and can be applied to the all domestic overhead power lines regardless of the cross-sectional areas. Also, it is showed that results of mock environmental test are satisfied.

An Experimental Study on the Evaluation of Unit-Water Content Acoording to Concrete Aggregate Variables through FDR Sensor (FDR 센서를 통한 콘크리트 골재 변수에 따른 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Yu, Seung-Hwan;Yang, Hyun-Min;Yoon, Jong-Wan;Park, Tae-Joon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.70-71
    • /
    • 2021
  • The unit quantity that affects the workability, shrinkage cracking, and durability of concrete is an important factor. Methods for measuring the unit quantity include a high frequency heating method, a capacitance method, a unit volume mass method, and a simple method. However, these methods have the disadvantage of poor measurement method, time required, and precision. To solve this problem, a relatively simple and fast measurement method was adopted to compensate for the shortcomings through a Frequency Domain Reflection (FDR) sensor, and the unit quantity was used. In addition, the measurement data was analyzed by deep learning to evaluate the unit quantity of concrete.

  • PDF

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

An Experimental Study on the Evaluation of Concrete Unit-Water Content Using High Frequency Moisture Sensor (FDR) (고주파수분센서(FDR)를 활용한 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.59-60
    • /
    • 2021
  • The unit-water content has a major problem in concrete structures which leads to micro cracks on the concrete during drying time. Thus, the compressive strength and durability of the concrete structures are significantly reduced. Several techniques have been developed to measure the unit-water content in concrete structures such as heating drying, unit volume mass, and capacitance measurements. However, these techniques have problems in during measurement such as longer time, expensive and difficult in analysis of data. Frequency Domain Reflectivity (FDR) is one of the sensors which used to measure the water content. This method has several advantages including easy to measure, inexpensive, and capable of measuring moisture in real time. In this study, an attempt has been made to evaluate the unit-water content in concrete using the FDR sensor and interpret the data with deep learning method.

  • PDF

Development of the Ubiquitous Thermal Sensor Unit for Transformers (유비쿼터스형 변압기 권선온도 측정장치 개발)

  • Kim, Il-Kwon;Cho, Hyun-Kyung;Lee, Dong-Zoon;Kim, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1427_1428
    • /
    • 2009
  • In this paper, we designed and fabricated the ubiquitous thermal sensor unit for high voltage facilities. This sensor unit generates electric power from a current transformer which was mounted in the high voltage wires and transmitted thermal data by using a Zigbee module. We simulated the high voltage facilities that temperature was going up to $80^{\circ}C$ gradually. From the experimental results, it was confirmed that sensibility of the ubiquitous thermal sensor unit is in ranges from $-0.7^{\circ}C$ to $0.3^{\circ}C$.

  • PDF

An Experimental Study on the Evaluation of Mortat Unit-Water Content by Powder Ratio Using Frequency Domain Reflectometry Sensor (고주파수분센서를 활용한 분체 비율별 모르타르 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Wi, Kwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.109-110
    • /
    • 2022
  • Currently, interest in the quality of concrete is increasing. Among the important factors for evaluating the quality of concrete, interest in unit-water content is also increasing. Currently, the air-meter method, the microwave oven drying method, the capacitance method, and the microwave penetration method are used to measure the unit-water content of concrete.. Among the above methods, except for the microwave method, the measurement method is complicated, portability is reduced, and economic efficiency is reduced. This research aims to measure a unit-water content by using a Frequency Domain Reflectometry(FDR) sensor that is economical, simple to measure, and portable among microwave methods. In addition, it is an experimental study to determine the accuracy of unit-water content using a single input residual model during deep learning to solve the limitations of the FDR sensor.

  • PDF