• Title/Summary/Keyword: sensor recognition

Search Result 1,112, Processing Time 0.038 seconds

A Method of Optimal Sensor Decision for Odor Recognition (냄새 인식을 위한 최적의 센서 결정 방법)

  • Roh, Yong-Wan;Kim, Dong-Ku;Kwon, Hyeong-Oh;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.9-14
    • /
    • 2010
  • In this paper, we propose method of correlation coefficients between sensors by statistical analysis that selects optimal sensors in odor recognition system of selective multi-sensors. The proposed sensor decision method obtains odor data from Metal Oxide Semiconductor(MOS) sensor array and then, we decide optimal sensors based on correlation of obtained odors. First of all, we select total number of 16 sensors eliminated sensor of low response and low reaction rate response among similar sensors. We make up DB using 16 sensors from input odor and we select sensor of low correlation after calculated correlation coefficient of each sensor. Selected sensors eliminate similar sensors' response therefore proposed method are able to decide optimal sensors. We applied to floral scent recognition for performance evaluation of proposed sensors decision method. As a result, application of proposed method with floral scent recognition using correlation coefficient obtained recognition rate of 95.67% case of using 16 sensors while applied floral scent recognition system of proposed sensor decision method confirmed recognition rate of 94.67% using six sensors and 96% using only 8 sensors.

Development Small Size RGB Sensor for Providing Long Detecting Range (원거리 검출범위를 제공하는 소형 RGB 센서 개발)

  • Seo, Jae Yong;Lee, Si Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.174-182
    • /
    • 2015
  • In this paper, we developed the small size RGB sensor that recognizes a long distance using a low-cost color sensor. Light receiving portion of the sensor was used as a camera lens for far distance recognition, and illuminating unit was increased the strength of the light by using a high-power white LED and a lens mounted on the reflector. RGB color recognition algorithm consists of the learning process and the realtime recognition process. We obtain a normalized RGB color reference data in the learning process using the specimens painted with target colors, and classifies the three colors using the Mahalanobis distance in recognition process. We apply the developed the RGB color recognition sensor to a prototype of the part classification system and evaluate the performance of its.

A Study on the Recognition System of Faint Situation based on Bimodal Information (바이모달 정보를 이용한 기절상황인식 시스템에 관한 연구)

  • So, In-Mi;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.225-236
    • /
    • 2010
  • This study proposes a method for the recognition of emergency situation according to the bimodal information of camera image sensor and gravity sensor. This method can recognize emergency condition by mutual cooperation and compensation between sensors even when one of the sensors malfunction, the user does not carry gravity sensor, or in the place like bathroom where it is hard to acquire camera images. This paper implemented HMM(Hidden Markov Model) based learning and recognition algorithm to recognize actions such as walking, sitting on floor, sitting at sofa, lying and fainting motions. Recognition rate was enhanced when image feature vectors and gravity feature vectors are combined in learning and recognition process. Also, this method maintains high recognition rate by detecting moving object through adaptive background model even in various illumination changes.

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.

Characteristics of 3-D Underwater Object Recognition Independent of Translation Using Ultrasonic Sensor Fabricated with Porous Piezoelectric Resonator (다공질 압전소자로 제작한 초음파 센서의 물체변위에 무관한 3차원 수중 물체인식 특성)

  • 조현철;이기성;박정학;이수호;사공건
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.916-921
    • /
    • 1997
  • In this study Characteristics of 3-D underwater object recognition independent of translation using the self-made ultrasonic sensor fabricated with porous piezoelectric resonator and presented. The sensor was satisfied with requirement of ultrasonic sensor. The recognition rates for the training data and the testing data are 97.45 and 91.25[%] respectively using the self-made ultrasonic sensor and SCL(Simple Competitive Learning) neural network. According to the experimental results It is believed that the self-made ultrasonic sensor can be applied as sensor of SONAR system.

  • PDF

A MEMS-Based Finger Wearable Computer Input Devices (MEMS 기반 손가락 착용형 컴퓨터 입력장치)

  • Kim, Chang-su;Jung, Se-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1103-1108
    • /
    • 2016
  • The development of a variety of sensor technology, users smart phone, the use of motion recognition apparatus such as a console game machines is increasing. It tends to user needs motion recognition-based input device are increasing. Existing motion recognition mouse is equipped with a modified form of the mouse button on the outside and serves as a wheel mouse left and right buttons. Existing motion recognition mouse is to manufacture a small, there is a difficulty to operate the button. It is to apply the motion recognition technology the motion recognition technology is used only pointing the cursor there is a limit. In this paper, use of MEMS-based motion recognition sensor, the body of the two-point operation data by recognizing the operation of the (thumb and forefinger) and generating a control signal, followed by studies on the generated control signal to a wireless transmitting computer input device.

Multi-Modal Biometries System for Ubiquitous Sensor Network Environment (유비쿼터스 센서 네트워크 환경을 위한 다중 생체인식 시스템)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.36-44
    • /
    • 2007
  • In this paper, we implement the speech & face recognition system to support various ubiquitous sensor network application services such as switch control, authentication, etc. using wireless audio and image interface. The proposed system is consist of the H/W with audio and image sensor and S/W such as speech recognition algorithm using psychoacoustic model, face recognition algorithm using PCA (Principal Components Analysis) and LDPC (Low Density Parity Check). The proposed speech and face recognition systems are inserted in a HOST PC to use the sensor energy effectively. And improve the accuracy of speech and face recognition, we implement a FEC (Forward Error Correction) system Also, we optimized the simulation coefficient and test environment to effectively remove the wireless channel noises and correcting wireless channel errors. As a result, when the distance that between audio sensor and the source of voice is less then 1.5m FAR and FRR are 0.126% and 7.5% respectively. The face recognition algorithm step is limited 2 times, GAR and FAR are 98.5% and 0.036%.

Realization of Object Detection Algorithm and Eight-channel LiDAR sensor for Autonomous Vehicles (자율주행자동차를 위한 8채널 LiDAR 센서 및 객체 검출 알고리즘의 구현)

  • Kim, Ju-Young;Woo, Seong Tak;Yoo, Jong-Ho;Park, Young-Bin;Lee, Joong-Hee;Cho, Hyun-Chang;Choi, Hyun-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • The LiDAR sensor, which is widely regarded as one of the most important sensors, has recently undergone active commercialization owing to the significant growth in the production of ADAS and autonomous vehicle components. The LiDAR sensor technology involves radiating a laser beam at a particular angle and acquiring a three-dimensional image by measuring the lapsed time of the laser beam that has returned after being reflected. The LiDAR sensor has been incorporated and utilized in various devices such as drones and robots. This study focuses on object detection and recognition by employing sensor fusion. Object detection and recognition can be executed as a single function by incorporating sensors capable of recognition, such as image sensors, optical sensors, and propagation sensors. However, a single sensor has limitations with respect to object detection and recognition, and such limitations can be overcome by employing multiple sensors. In this paper, the performance of an eight-channel scanning LiDAR was evaluated and an object detection algorithm based on it was implemented. Furthermore, object detection characteristics during daytime and nighttime in a real road environment were verified. Obtained experimental results corroborate that an excellent detection performance of 92.87% can be achieved.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Application of Sensor Network Using Multivariate Gaussian Function to Hand Gesture Recognition (Multivariate Gaussian 함수를 이용한 센서 네트워크의 수화 인식에의 적용)

  • Kim Sung-Ho;Han Yun-Jong;Bogdana Diaconescu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.991-995
    • /
    • 2005
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as health, environment and habitat monitoring, military, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modern teaming techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes haying the capability of simple processing and wireless communication. The proposed system is able to perform classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to hand gesture recognition system.