• 제목/요약/키워드: sensor noise

검색결과 1,769건 처리시간 0.033초

다축힘센서의 노이즈신호 개선을 위한 신호처리 방법 (Signal Processing Method for Noise Reduction of Multi-Axis Force Sensors)

  • 김용찬;강철구;남현도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1026-1029
    • /
    • 2003
  • There are always some errors in force sensing of multi-axis force sensors that aggravate sensor performance. Error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body, and the other is error due to noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then a method that can reduce the effect of noise signals. The method is to read digital signals in computer instead of analog voltage signals. We can eliminate the bad effect of electromagnetic waves emitted from computer and of 60 Hz noise emitted from AC source by the proposed method. The proposed method is investigated through experimental demonstration. The experimental results show the proposed method improves the sensor performance significantly.

  • PDF

저노이즈형 진동계측 앱을 통한 MEMS 센서의 계측성능분석 (The Analysis in Measurement Performance MEMS Sensor Through the Low-Noise Vibration Measurement APP)

  • 정영석;윤성원
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.93-100
    • /
    • 2017
  • With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.

의료용 플라스틱광섬유 센서 매트 (Sensor Mat using POF for Medical Application)

  • 최규남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.363-365
    • /
    • 2007
  • Novel concept of sensor mat and its signal processing method is proposed for patient monitoring in medical application. Proposed sensor mat structure has sensing inner layer which has cross-linked arrangement using plastic optical fiber(POF). Large core diameter of plastic optical fiber behaved as band pass filter by averaging the noise component. caused by unwanted environmental factors. Signal processor followed by sensor output added noise immune performance by filtering out unwanted component. Fail-proof patient breath monitoring scheme was realized by using intelligent decision algorithm. Unlike the conventional approach by using mechanical sensor, which have high sensitivity both to intruder and to environmental noise, our approach provided reliable breath motion detection.

  • PDF

이동 통신 단말용 센서 시스템을 위한 신호 잠금 방식의 검출 회로 (Signal lock-in detection circuit for mobile device sensor systems)

  • 정인일;손호현;최영환
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.559-562
    • /
    • 2008
  • In this paper we propose a lock-in detection method for portable sensor systems and demonstrate with the portable detection module that has high sensitivity and robustness against the noise. The simple portable sensor module is manufactured using MCU(Micro Contorl Unit), OPAMP, MOSFET and a pair of infrared sensor. Manufactured sensor module is testified in the noisy environment caused by an external light and an white noise source. Without any type of band pass filters, we recover a signal of 33 $mV_{p-p}$ in 80 $mV_{p-p}$ white noise and get the DR(Dynamic Reserve) of 14 dB.

  • PDF

Mciro-flown 속도센서를 이용한 흡음률 측정 (Sound Absorption Measurement by Using Micro-Flown Velocity Sensor)

  • 정성수;조문재;김용태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.692-693
    • /
    • 2004
  • We introduce a new velocity sensor, micro-flown sensor, which was developed by H-E de Bree. The sound absorption coefficients of a fiber material with the conventional pressure microphones and the micro-flown sensors were measured and compared. The experimental results show that both sensors could be well applied to measure the sound absorption coefficient but the pressure sensor was rather stable than micro-flown sensor

  • PDF

센서에 측정에러가 있는 볼-빔 시스템의 출력 궤환 제어기 (An Output Feedback Controller for a Ball and Beam System under Measurement Noise of Feedback Sensor)

  • 김현도;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.955-959
    • /
    • 2011
  • In this paper, we assume that an output sensor of a ball and beam system is coupled with AC measurement noise. We propose an output feedback controller for a ball and beam system under measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to minimize the effect of measurement noise in output feedback information. We give an analysis of the controlled system and illustrate the improved control performance via simulation and experiment for a ball and beam system.

무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구 (A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN)

  • 이승철;정완영
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

미래병사 생체환경센서 시스템 설계에 관한 연구 (A Study on Designing the System of Vital and Environmental Sensor for Future Soldier System)

  • 김현준;채제욱;최의중
    • 한국군사과학기술학회지
    • /
    • 제16권3호
    • /
    • pp.233-239
    • /
    • 2013
  • This paper includes the algorithm of eliminating noise, the processing technique of sensor and the results of designing vital and environmental sensor, one of the survivability subsystem of Future Soldier System. In this paper, we propose the adaptive filtering, moving noise removal in order to detect signals stabilized. And these help that we get bio-signals the ECG calculating methods such as search back and ensemble method. It is made up the vital and environmental sensor including the flexible sensor. In that sense, this study can be applied when it is planned the modular type Future Soldier System.

Camera Source Identification of Digital Images Based on Sample Selection

  • Wang, Zhihui;Wang, Hong;Li, Haojie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3268-3283
    • /
    • 2018
  • With the advent of the Information Age, the source identification of digital images, as a part of digital image forensics, has attracted increasing attention. Therefore, an effective technique to identify the source of digital images is urgently needed at this stage. In this paper, first, we study and implement some previous work on image source identification based on sensor pattern noise, such as the Lukas method, principal component analysis method and the random subspace method. Second, to extract a purer sensor pattern noise, we propose a sample selection method to improve the random subspace method. By analyzing the image texture feature, we select a patch with less complexity to extract more reliable sensor pattern noise, which improves the accuracy of identification. Finally, experiment results reveal that the proposed sample selection method can extract a purer sensor pattern noise, which further improves the accuracy of image source identification. At the same time, this approach is less complicated than the deep learning models and is close to the most advanced performance.

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.