• Title/Summary/Keyword: sensor networks security

Search Result 363, Processing Time 0.024 seconds

Design and Implementation of Automatic System in Car Based on Zigbee (지그비 기반 차량 자동화 시스템의 설계 및 구현)

  • Kim, Nam-Hee;Lee, Jong-Chan
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • In this paper, we designed and implemented mobile object automatic system based on senor networks for telematics. For developing this system, we gather the various sensing data through wireless communication method using zigbee sensor networks and analyze them in monitoring equipment. And we enable the driver to recognize the car state information on the whole by interfacing analyzed data to telematics unit. And, we implemented automatic controller that can control temperature and humidity in car automatically by actuating air conditioner based on the data that was monitored throughout temperature sensor, humidity sensor and brightness sensor based on sensor networks.

  • PDF

A Resource-Optimal Key Pre-distribution Scheme for Secure Wireless Sensor Networks

  • Dai Tran Thanh;Hieu Cao Trong;Hong Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.1113-1116
    • /
    • 2006
  • Security in wireless sensor networks is very pressing especially when sensor nodes are deployed in hostile environments. To obtain security purposes, it is essential to be able to encrypt and authenticate messages sent amongst sensor nodes. Keys for encryption and authentication must be agreed upon by communicating nodes. Due to resource limitations and other unique features, obtaining such key agreement in wireless sensor network is extremely complex. Many key agreement schemes used in general networks, such as trusted server, Diffie-Hellman and public-key based schemes, are not suitable for wireless sensor networks [1], [2], [5], [7], [8]. In that situation, key pre-distribution scheme has been emerged and considered as the most appropriate scheme [2], [5], [7]. Based on that sense, we propose a new resource-optimal key pre-distribution scheme utilizing merits of the two existing key pre-distribution schemes [3], [4]. Our scheme exhibits the fascinating properties: substantial improvement in sensors' resource usage, rigorous guarantee of successfully deriving pairwise keys between any pair of nodes, greatly improved network resiliency against node capture attack. We also present a detailed analysis in terms of security and resource usage of the scheme.

  • PDF

Unified Modeling Language based Analysis of Security Attacks in Wireless Sensor Networks: A Survey

  • Hong, Sung-Hyuck;Lim, Sun-Ho;Song, Jae-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.805-821
    • /
    • 2011
  • Wireless Sensor Networks (WSNs) are rapidly emerging because of their potential applications available in military and civilian environments. Due to unattended and hostile deployment environments, shared wireless links, and inherent resource constraints, providing high level security services is challenging in WSNs. In this paper, we revisit various security attack models and analyze them by using a well-known standard notation, Unified Modeling Language (UML). We provide a set of UML collaboration diagram and sequence diagrams of attack models witnessed in different network layers: physical, data/link, network, and transport. The proposed UML-based analysis not only can facilitate understanding of attack strategies, but can also provide a deep insight into designing/developing countermeasures in WSNs.

A Compromise-Resilient Tunneled Packet Filtering Method in Wireless Sensor Networks (무선 센서 네트워크에서 훼손 감내하는 터널된 패킷 여과 기법)

  • Kim, Hyung-Jong
    • Convergence Security Journal
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In wireless sensor networks, an adversary can launch the wormhole attacks, where a malicious node captures packets at one location and tunnels them to a colluding node, which retransmits them locally. The wormhole attacks are very dangerous against routing protocols since she might launch these attacks during neighbor discovery phase. A strategic placement of a wormhole can result in a significant breakdown in communication across the network. This paper presents a compromise-resilient tunneled packet filtering method for sensor networks. The proposed method can detect a tunneled message with hop count alteration by a comparison between the hop count of the message and one of the encrypted hop counts attached in the message. Since the proposed method limits the amount of security information assigned to each node, the impact of wormhole attacks using compromised nodes can be reduced.

  • PDF

Resilient Security Protocol for Combating Replay Attacks in Wireless Sensor Networks (리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜)

  • Zhang, Di;Heo, Ung;You, Kang-Soo;Choi, Jae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.70-80
    • /
    • 2010
  • Due to the resource limitations of sensor nodes, providing a security protocol is a particular challenge in sensor networks. One popular method is the neighborhood-based key agreement protocol (NEKAP). NEKAP is an efficient and lightweight protocol, but it includes loopholes through which adversaries may launch replay attacks by successfully masquerading as legitimate nodes. In this paper, we present a modified security protocol for wireless sensor networks. We provide four types of keys for each node, which adapt to different security requirements; and an improvement is made to alleviate the replay attack. According to our qualitative performance analyses, the proposed security protocol provides effectiveness in terms of authentication security, attacking node detection, and replay attack resilience when compared to the conventional method.

Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks (무선 센서 네트워크에서 다중 공격 방어를 위한 보안 라우팅 기법)

  • Moon, Soo-Young;Cho, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Sensor Networks are composed of many sensor nodes, which are capable of sensing, computing, and communicating with each other, and one or more sink node(s). Sensor networks collect information of various objects' identification and surrounding environment. Due to the limited resources of sensor nodes, use of wireless channel, and the lack of infrastructure, sensor networks are vulnerable to security threats. Most research of sensor networks have focused on how to detect and counter one type of attack. However, in real sensor networks, it is impractical to predict the attack to occur. Additionally, it is possible for multiple attacks to occur in sensor networks. In this paper, we propose the Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks. The proposed mechanism improves and combines existing security mechanisms, and achieves higher detection rates for single and multiple attacks.

IDs Assignment of Hybrid Method for Efficient and Secure USN (Ubiquitous Sensor Networks) (효율적인 안전한 유비쿼터스 센서 네트워크를 위한 하이브리드 방식의 아이디 할당)

  • Sung, Soon-Hwa
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.15-25
    • /
    • 2008
  • Due to the differences between a mobile ad-hoc network and a sensor network, the pre-existing autoconfiguration for a mobile ad-hoc network cannot be simply applied to a sensor network. But. a mechanism is still necessary to assign locally unique addresses to sensor nodes efficiently. This paper proposes a hybrid IDs assignment scheme of local area sensor networks. The IDs assignment scheme of hybrid method combines a proactive IDs assignment with a reactive IDs assignment scheme. The proposed scheme considers efficient communication using reactive IDs assignment, and security for potential attacks using zone-based self-organized clustering with Byzantine Agreement in sensor networks. Thus, this paper has solved the shortage of security due to minimizing network traffic and the problem of repairing the network from the effects of an aberrant node in sensor networks.

  • PDF

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

Study on the OMAC-SNEP for Unattended Security System Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 무인 경비 시스템에서의 OMAC-SNEP 기술에 관한 연구)

  • Lee Seong-Jae;Kim Hak-Beom;Youm Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.105-114
    • /
    • 2006
  • Ubiquitous Sensor Network consists of a number of sensor nodes with a limited computation power and limited communication capabilities, and a sensor node is able to communicate with each other at anytime and in any place. Due to the rapid research and development in sensor networks, it will rapidly grow into environments where hmm beings can interact in an intuitive way with sensing objects which can be PDAs, sensors, or even clothes in the future. We are aiming at realizing an Unattended Secure Security System to apply it to Ubiquitous Sensor Network. In this paper, the vulnerabilities in the Unattended security system are identified, and a new protocol called OMAC-SNEP is proposed for the Unattended Secure Security System. Because the CBC-MAC in SNEP is not secure unless the message length is fixed, the CBC-MAC in SNEP was replaced with OMAC in SNEP. We have shown that the proposed protocol is secure for my bit length of messages and is almost as efficient as the CBC-MAC with only one key. OMAC-SNEP can be used not only in Unattended Security System, but also any other Sensor Networks.

Design of Improved Authentication Protocol for Sensor Networks in IoT Environment (사물인터넷 환경에서 센서 네트워크에 대한 개선된 인증 프로토콜 설계)

  • Kim, Deuk-Hun;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.467-478
    • /
    • 2015
  • Recently interest in Internet of Things(IoT) is increasing, and a variety of the security technologies that are suitable for Internet of Things has being studied. Especially sensor network area of the device is an increased using and diversified for a low specification devices because of characteristic of the Internet of Things. However, there is difficulty in directly applying the security technologies such as the current authentication technologies to a low specification device, so also increased security threats. Therefore, authentication protocol between entities on the sensor network communication in Internet of Things has being studied. In 2014, Porambage et al. suggested elliptic curve cryptography algorithm based on a sensor network authentication protocol for advance security of Internet of Things environment, but it is vulnerability exists. Accordingly, in this paper, we analyze the vulnerability in elliptic curve cryptography algorithm based on authentication protocol proposed by Porambage et al. and propose an improved authentication protocol for sensor networks in Internet of Things environment.