• Title/Summary/Keyword: sensor diagnostics

Search Result 91, Processing Time 0.022 seconds

Operating Characteristic Analysis of Optic Temperature Sensor for Overheat Detection in Panel Board (분전함에서 이상발열 감지를 위한 광온도센서의 동작특성 분석)

  • Moon, Hyun-Wook;Kim, Dong-Woo;Gil, Hyung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.100-106
    • /
    • 2009
  • In this study, methods of overheat detection at the coupling or wire in electrical facility are investigated, operating characteristic about the optic temperature sensor for continuous on-line temperature monitoring in diagnostics system of electrical facility is analyzed. Heating sources in the experiment for operating characteristics of optic temperature sensor use black body and hot plate, output voltage of optic temperature sensor in accordance with temperature variation is analyzed. Overheat generation due to poor contact at the circuit breaker in panel board detects using a thermocouple, infrared thermal camera and optic temperature sensor, and experiment results are analyzed. The effect of optic temperature sensor is the same that of other methods. These results expect to use basic research material for adjusting field of electrical diagnostics system using RFID type optic temperature sensor in the near future.

Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy (다이오드 레이저를 이용한 연소진단기법)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Kim, Hyuck-Joo;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant (원전 극한 환경적용을 위한 필드버스 통신망 요건)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Journal of Information Technology Services
    • /
    • v.8 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

Wireless Sensor for Diagnostics of Electric Equipments (전력 설비 감시를 위한 무선 센서)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.98-102
    • /
    • 2008
  • Methods and analysis of a simple wireless sensor concept for detecting and locating faults as well as for load monitoring are presented. The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

A Sensitivity Measurement of Ultrasonic Signals by PZT Sensor (PZT 센서를 이용한 초음파 신호 감도측정)

  • 최인혁;권동진;윤장완;정길조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.403-405
    • /
    • 1999
  • Power transformers have a tendency of ultra-high voltage and huge capacity as power demand increases day after day. Therefore, the fault by insulation destruction gives rise to large area of power failure in huge capacity transformers. On-line predictive diagnostics is very important In power transformers because of economic loss and its spreading effect. Hence, this study presents experiments of partial discharge method using ultrasonic sensor in order to confirm the possibility of ultrasonic sensor in power transformers. It carries out the experiments of measuring delay time between ultrasonic sensor and transducer, sensitiities by temperature change of oil and by barriers inside transformers. It is also Included wave analysis by ultrasonic sensor for needle-plate electrode powered on through high-voltage equipments.

  • PDF

The Design and Experiment of a Planar Patch Sensor for Partial Discharge Diagnostics in 6.6 kV Rotating Machine Stator Windings

  • Yang, Sang-Hyun;Park, Noh-Joon;Park, Dae-Hee;Kim, Hee-Dong;Lim, Kwang-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.173-176
    • /
    • 2009
  • In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide frequency ranges. Discharge sparks and electromagnetic pulses generated from a discharge source, can be detected using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, a planar patch sensor was designed and fabricated using a CST-MWS simulation, and PD signals from an artificially defected stator winding were also measured by the sensor proposed in this study. Furthermore, an HFCT was used as a reference sensor and compared with the proposed new planar patch sensor. In the results of the experiment, the planar patch sensor showed a similar performance to the HFCT sensor.

Chaotic analysis of tool wear using multi-sensor signal in end-milling process (엔드밀가공시 복합계측 신호를 이용한 공구 마멸의 카오스적 해석)

  • Kim, J.S.;Kang, M.C.;Ku, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.93-101
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and control system, which were hitherto based on linear models. Theory of chaos which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end milling process. Then, it will be verified that cutting force is low-dimensional chaos by calculating Lyapunov exponents. Fractal dimension, embedding dimension. And it will be investigated that the relation between characteristic parameter calculated from sensor signal and tool wear.

  • PDF

Remote Measurement for Automobile′s ECU Sensor Signals Using RF modules (RF모듈을 이용한 자동차 ECU 센서신호의 원격계측)

  • 이성철;서지원;권대규;방두열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1067-1070
    • /
    • 2003
  • In this paper, we present a remote measurement system for the wireless monitoring of ECU Sensor Signals of vehicle. In order to measure the ECU sensor signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A micro-controller 80C196KC is used for communicating ECU sensor signals. ECU sensor signals are transmitted to the RF-wireless terminal that was developed using the micro controller 80386EX. LCD, and RF-module. 80386EX software is programmed to monitor the ECU sensor signals using the Borland C++ compiler in which the half duplex method was used for the RS232 communication. The algorithms for measuring the ECU sensor signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of ECU sensor signals using 80386EX is also verified through the developed systems and algorithms.

  • PDF

Comparison of Utrasonic and Vibration Diagnostic Techniques for the Inspection of Pipes in CVD System (화학증착 시스템에서의 파이프내 오염입자 관찰을 위한 초음파 및 진동 진단법의 비교연구)

  • Yun Ju-Young;Seong Dae-Jin;Shin Yong-Hyoen;Lee Ji-Hun;Moon Doo-Kyung;Kang Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • In examining particulate deposits in the pipes of a chemical vapor deposition (CVD) system, vibration diagnostics is compared and studied against ultrasonic diagnostics, The latter method involves pulsing the outer wall of pipes with an ultrasonic sensor and analyzing the resulting echo to observe particulate deposits inside pipes. Vibration diagnostics examines the existence of particulate deposits by analyzing the difference in the frequencies generated when a vibrator is adhered to the outer wall of pipes. With ultrasonic diagnostics, good test results were obtained only when particulate deposits were attached to the inner wall of the pipes, After some time, however, particulate deposits were not detected properly, as the ultrasonic wave failed to cross the fine gaps created between the inner wall of the pipe and the deposits. The ultrasonic wave bounced back because of the dried particulate deposits on the wall. Thus, it has been proven that the ultrasonic diagnostics is not an appropriate means of examining the particulate deposits in a vacuum, On the other hand, vibration diagnostics succeeded in detecting the particulate deposits regardless of the lapsed time. In conclusion, the vibration diagnostics is being expected as the effective method in monitoring the particulate deposits inside pipes in the CVD system where the desired behavior is reduced frequency along with the particulate deposits in comparison to the case where the pipe is clean.