• Title/Summary/Keyword: sensor data

Search Result 7,260, Processing Time 0.029 seconds

A GTS-based Sensor Data Gathering under a Powerful Beam Structure (파워 빔 구조에서 GTS 기반 센서 데이터 수집 방안)

  • Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • This paper proposes an architecture of a sensor network for gathering data under a powerful beam cluster tree architecture. This architecture is used when there is a need to gather data from sensor node where there is no sink node connected to an existing network, or it is required to get a series of data specific to an event or time. The transmit distance of the beam signal is longer than that of the usual sensor node. The nodes of the network make a tree network when receiving a beam message transmitting from the powerful root node. All sensor nodes in a sink tree network synchronize to the superframe and know exactly the sequence value of the current superframe. When there is data to send to the sink node, the sensor node sends data at the corresponding allocated channel. Data sending schemes under the guaranteed time slot are tested and the delay and jitter performance is explained.

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment (실시간 유비쿼터스 환경에서 센서 데이터 처리를 위한 대기시간 산출 알고리즘)

  • Kang, Kyung-Woo;Kwon, Oh-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The real-time ubiquitous environment is required to be able to process a series of sensor data within limited time. The whole sensor data processing consists of several phases : getting data out of sensor, acquiring context and responding to users. The ubiquitous computing middleware is aware of the context using the input sensor data and a series of data from database or knowledge-base, makes a decision suitable for the context and shows a response according to the decision. When the real-time ubiquitous environment gets a set of sensor data as its input, it needs to be able to estimate the delay-time of the sensor data considering the available resource and the priority of it for scheduling a series of sensor data. Also the sensor data of higher priority can stop the processing of proceeding sensor data. The research field for such a decision making is not yet vibrant. In this paper, we propose a queuing time computation algorithm for sensor data processing in real-time ubiquitous environment.

Design of A Faulty Data Recovery System based on Sensor Network (센서 네트워크 기반 이상 데이터 복원 시스템 개발)

  • Kim, Sung-Ho;Lee, Young-Sam;Youk, Yui-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.

Energy Efficient Clustering Scheme for Multi-sensor on Wireless Sensor Networks (무선 센서 네트워크의 다종 센서에 대한 에너지 효율적인 클러스터링 기법)

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.573-584
    • /
    • 2016
  • Recent application range of sensor networks is becoming diverse. It means collected sensor data types are becoming diverse too. These sensor data have their own characteristics. Thus achieving energy efficiency, existing sensor network management policy consider their own characteristics. However, it is inefficient to apply the existing network management schemes for controlling such kind of data at the same time. Because, existing network management schemes considered one type of data only. Therefore, we propose a novel routing scheme that is able to efficient energy conservation through effective data controlling on multi-sensor application environment.

Development of Real-Data Motion Sensor Emulator (실측 데이터 기반 모션센서 에뮬레이터의 개발)

  • Lee, MinSuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • This paper describes the development of an open source motion sensor emulator. It helps developers to understand the motion sensor and its data better. Through this emulator, the realtime or stored motion sensor data can be applied to the applications that utilize motion sensors. The data of motion sensors which include accelerometer sensor, magnetic field sensor, gyro sensor, GPS, and so on, can be collected by using smart phones or motion sensors. We also describe a visualizer which shows various graphs, video and 3D animations based on the data sent by the emulator. It helps developers to understand motion sensors and how to use the sensors. The developed emulator is compatible with Android sensor simulator.

Sensor Data Processing System using Sensor Service Description Language (센서 서비스 기술 언어를 이용한 센서 데이터 처리 시스템)

  • Hong, Hyeon-Woo;Kim, Yong-Woon;Yoo, Sang-Keun;Kim, Hyoung-Jun;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1182-1189
    • /
    • 2007
  • As ubiquitous environment rapidly emerges due to the development of network and information communication technology, ubiquitous computing is being noticed as a technology that will take the lead in information technology industry of the future. To the end, the data recognized from each sensors, collected and processed need be transferred to applied service so that they may be used as data for providing sum to users. However, in reality as the definitions of metadata and platform for each sensor are not clear, approach from applied service for data use is difficult and there are limitations in transferring sensor measurement data of the applied service because of the difference of platform and protocol. In this paper, we designed sensor service technology language that expresses sensor and measurement data and describes the service though sensor data service. Also the researcher implemented a sensor data processing system that transfers sensor data to the applied service by using web service. The thesis will apply a reference model for standardization to guarantee mutual compatibility in exchanging sensor data through the system.

A Sensor Data Compression Algorithm based on Dynamic Bit-assignment Techniques (동적 비트할당 기반 센서데이타 압축 기법)

  • Lee, Seok-Jae;Park, Hyun-Ho;Yeo, Myung-Ho;Song, Seok-Il;Yoo, Jae-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.318-325
    • /
    • 2008
  • Most of the sensor applications collect and analyze sensor data within a given period of time. When sensor send a data to sink, it spend many communication cost. Accordingly, a compression algorithm is one of the most critical issues for the communication cost decrease in sensor fields. In this paper, we propose an algorithm for compressing sensor data using the dynamic bit assignment technique. In our algorithm, sink collect sensor data within a short period of time and make bit assign information. Then sink send the information to sensor. Finally, sensors compresssensing data and send to sink.

Position Detection Algorithms Using 3-Axial Accelerometer Sensor (3축 가속도 센서를 이용한 위치 검출 알고리즘)

  • Kim, Nam-Jin;Choi, Young-Hee;Choi, Lee-Kwon
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2011
  • In this paper, we consist of three dimensional acceleration sensor as a small-sized sensor module to acquire base technologies that need to estimate exhibition audience' moving distance. and that we developed algorism and device that can calculate acceleration in gravity direction with attaching it to people's body part without regard to three dimensional direction. By making use of the sensor module, we have to process the data that let it quantitatively process possible to measure people's walk and movement by computer system. We normalized sensor output data in the process of change from sensor module to acquisition of data, rectangular coordinates and single scalar acceleration value in gravity direction. Printed out sensor data attaching sensor module to people's body part is used for motion pattern detection after normalization, Motion sensor devised mode change algorism because it print data of other pattern according to attached position of body. For algorism design, we collected data occurring during walking about subject and we also defined occurring problem domain after analyzing the data. We settle defined problem domain and that we simulated the walking number measuring instrument with highly efficient in restricted environment.

A 2MC-based Framework for Sensor Data Loss Decrease in Wireless Sensor Network Failures (무선센서네트워크 장애에서 센서 데이터 손실 감소를 위한 2MC기반 프레임워크)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.31-40
    • /
    • 2016
  • Wireless sensor networks have been used in many applications such as marine environment, army installation, etc. The sensor data is very important, because all these applications depend on sensor data. The possibility of communication failures becomes high since the surrounding environment of a wireless sense network has an sensitive effect on its communications. In particular, communication failures in underwater communications occur more frequently because of a narrow bandwidth, slow transmission speed, noises from the surrounding environments and so on. In cases of communication failures, the sensor data can be lost in the sensor data delivery process and these kinds of sensor data losses can make critical huge physical damages on human or environments in applications such as fire surveillance systems. For this reason, although a few of studies for storing and compressing sensor data have been proposed, there are lots of difficulties in actual realization of the studies due to none-existence of the framework using network communications. In this paper, we propose a framework for reducing loss of the sensor data and analyze its performance. The our analyzed results in non-framework application show a decreasing data recovery rate, T/t, as t time passes after a network failure, where T is a time period to fill the storage with sensor data after the network failure. Moreover, all the sensor data generated after a network failure are the errors impossible to recover. But, on the other hand, the analyzed results in framework application show 100% data recovery rate with 2~6% data error rate after data recovery.

Data Inconsistency Detection Method in IoT Sensor Environment (IoT 센서 환경에서의 데이터 불일치 검출 기법)

  • Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.530-531
    • /
    • 2021
  • In this paper, I proposed a technique for identifying discrepancies between data input in the IoT sensor environment. The proposed technique can manage numerically input sensor data so that it can be applied to actual field problems. The proposed technique can detect when contradictory data is input from two or more sensors in an actual IoT sensor environment, and through this, it can be developed into a method that can identify and resolve sensor failure or intentional data disturbance.

  • PDF