
지능정보연구 제17권 제1호 2011년 3월(pp.01~16)

지능정보연구 제17권 제1호 2011년 3월 1

Queuing Time Computation Algorithm for Sensor Data
Processing in Real-time Ubiquitous Environment

Kyung Woo Kang
Division of Information and Communication,
Baekseok University
(kwkang@bu.ac.kr)

Ohbyung Kwon
College of Management,
Kyung Hee University
(obkwon@khu.ac.kr)

․․

The real‐time ubiquitous environment is required to be able to process a series of sensor data
within limited time. The whole sensor data processing consists of several phases : getting data out of
sensor, acquiring context and responding to users. The ubiquitous computing middleware is aware of
the context using the input sensor data and a series of data from database or knowledge‐base, makes
a decision suitable for the context and shows a response according to the decision. When the real‐time
ubiquitous environment gets a set of sensor data as its input, it needs to be able to estimate the delay‐
time of the sensor data considering the available resource and the priority of it for scheduling a series
of sensor data. Also the sensor data of higher priority can stop the processing of proceeding sensor
data. The research field for such a decision making is not yet vibrant. In this paper, we propose a
queuing time computation algorithm for sensor data processing in real‐time ubiquitous environment.

․․

Received : December 25, 2010　　Revision：January 06, 2011　　Accepted : January 09, 2011

Type of Submission : English Fast-track Corresponding author : Ohbyung Kwon

1. Introduction

Ubiquitous computing environment becomes
applied to a variety of service areas such as logis-
tics, asset management and commerce. Ubiqui-
tous computing environment aims to be also
available in a wider range of physical domain
such as u-cities. However, this enlargement must
require resolving scalability issues. Considering

the ubiquitous computing vision characterized by
mobility of people, anywhere connected, distri-
buted context data processing, heterogeneous de-
vices, and individualized response, scalability and
timely response have been regarded as crucial. In
particular, the essential part of scalability lies in
endurably processing huge sensor data from many
sensors in limited time. Data processing becomes
more intensive if context aware process needs

KYUNG WOO KANG․OHBYUNG KWON

2 지능정보연구 제17권 제1호 2011년 3월

non-sensor data such as user profile and web
source to be jointly used with sensor data in real-
time.

This paper focuses on scheduling problem
for scalable sensor data processing in real-time
ubiquitous environment. In general, real-time ubi-
quitous environment consists of receiving sensor
data from sensory networks, retrieving non-sen-
sor data from database or any other data sources,
acquiring context from sensor data and non-sen-
sor data, and returning context data to user
interface. These steps may vary subject to the
characteristics of the domain. For example, sen-
sor data may be obtained form heterogeneous
sensors: location, temperature, humidity, illumi-
nation, or activity. Then the sensor data may be
temporarily stored in a specific repository or
working memory, in case of database and stream-
ing method, respectively. Reading the stored sen-
sor data is performed by more than one applica-
tion programs which are connected to database
management system or Data Stream Management
System (DSMS). Once the data are read, one can
estimate context information which is useful to
provide a set of services to the users. At this
time, inference engines may involve learning al-
gorithms such as Support Vector Machine
(SVM), Markov analysis and time series analysis
for real-time service.

Not a few portions of ubiquitous comput-
ing environments must have real-time features.
Correspondingly, at least three conditions requi-
red by real-time environment are needed in the
realization of real-time ubiquitous service. First,

required time of service from reading sensor data
to make context information should be consi-
dered. The read sensor data are continuously cu-
mulated in a data queue for service, even though
available resources for data processing are limi-
ted. More productive data processing and queue
administration methods are highly needed. Se-
cond, prioritizing sensor data processing tasks
stacked in queue should be considered. This is
crucial for increasing the quality of service by
declining service mismatch issues. To do so, esti-
mated time of service and queuing time of the
tasks must be identified to assign more resources
with the tasks of higher priority. Accordingly,
having estimated waiting time of sensor data of
lower priority is also useful in identifying service
execution time and notifying it to the users.
Third, interval time from sensor data acquisition
to service execution should not exceed the ex-
pected service execution time. If a data process-
ing task of normal or higher priority may not be
accomplished in a required time and the priority
of the next task is lower than the current task,
then the next task may be deleted to maintain the
overall quality of service.

However, even though these conditions are
crucial in developing real-time ubiquitous com-
puting environment, remarkable solutions that
cope with the conditions are still rare. The dearth
of these considerations partially results in the
limited realization of real-time ubiquitous serv-
ices for very small application domains. Sensor
data processing methods really matter for larg-
er-sized service domain (Nam et al., 2008). In

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 3

particular, estimating queuing time of stacked
sensor data is essential to propose more pro-
ductive sensor data processing methods. This is
more critical if one or more inference engines
such as ontology engine and rule-based engine
are considered in a real-time ubiquitous comput-
ing environment (Hatala et al., 2005).

Hence, the purpose of this paper is to pro-
pose an algorithm to compute queuing time when
a ubiquitous middleware processes sensor data
and at the same time newly coming sensor data.
Then the optimal queuing time is utilized to make
a scheduling decision for real-time ubiquitous
computing environment. The remainder of this
paper is organized as follows. Some illustrative
ubiquitous scenarios which aim to understand the
nature of real-time ubiquitous and legacy sensor
data processing methods for context-aware serv-
ices are described in section 2 and 3, respecti-
vely. In section 4, the proposed sensor data proc-
essing method which computes the queuing time
for context-awareness is shown. To show the fea-
sibility of the proposed idea, the design and con-
ducted results of a computational experiment are
delineated in the next section. Finally, in section
6, concluding remarks with future research issues
are described.

2. Real-Time Ubiquitous Computing
Environment Scenarios

In this section, two examples are illustrated
to show the nature of real-time ubiquitous com-
puting environments, and also the reason why the

research of queuing time computation for sensor
data processing is doable. The first example is
customized advertisement in the shopping mall.
Suppose that some products are promoted on a
customer’s device when the customer is on the
way into a mall from parking lot. The contents
for individualized promotion may have nothing
to do with age or sex of the customers on the
way. In general, if the contents may be about the
most popular products or seasonal products, then
these promotions may not impress the customers
favorably. The advertisement method can be
changed when it comes to real-time ubiquitous
computing environment setting. Not a few phys-
ical sensors are detecting a customer who is ar-
riving at parking lot and the sends the raw data
to the inference engine. The engine can get user
profile such as sex or age of the customers. With
the user profile, the context-aware process gets
the list of products that may be suitable to the
customers from database or knowledge base. The
promotion contents of the products are shown
through the display device on the way of the
customers. Before the customer passes the dis-
play device, the ubiquitous middleware should be
ready to show the promotions. It means that the
context management middleware should finish
the whole process of gathering sensor data, in-
ference, retrieving promotion contents from data-
base and displaying the contents. If it cannot deal
with the sensor data of all customers within the
time-limit because of the number of them, some
of the sensor data should be thrown away, just
because it is useless to play the contents or show-

KYUNG WOO KANG․OHBYUNG KWON

4 지능정보연구 제17권 제1호 2011년 3월

ing ads after the customers pass over the display-
ing device. Another issue on sensor data is the
prioritizing sensor data streams. If sensor data of
higher priority come in, the jobs of lower priority
should be paused until the higher priority data
finishes being processed. For example, suppose
that a very important customer comes in the
parking lot and can then be recognized by a
sensor. The ubiquitous middleware would better
prepare the promotion contents which fit more to
the customer’s dynamic preference. Preparing
these contents should get higher priority because
the customer will more likely to accept the pro-
motion. Therefore, if the middleware is dealing
with several precedent sensor data, the middle-
ware will pause the processing and take the new-
ly coming sensor data of higher priority. If the
stopped job of lower priority is estimated to wait
later than the service time limit, the job had bet-
ter be thrown away for global service optimization.

The second scenario refers to scheduling
efficient routing in amusement park. In general,
visitors are positive to get served for optimal
routing reflecting current context such as weath-
er, location, crowd, special events and their pre-
ferences. Depending on the context, the visitors
select the next attraction to visit. The ubiquitous
middleware could support the visitors by provid-
ing them with the information how long they
have to wait on the line and get served. To do
so, the ubiquitous system may encourage the vis-
itor to submit the list of favored attractions at the
entrance and be given an ID tag. In the park,
their tags would be detected by many optical or

IR sensors wherever they enter. From the data-
base, the ubiquitous middleware could retrieve
the information of the visitor’s preference. For
example, current congestion of the rides could be
used for recommending the rides. Let’s supposed
that there are sufficient number of display de-
vices and sensors all over the park. The sensors
detect the IDs of visitors in the vicinity and send
them to the middleware. The middleware infers
the direction of their progress and get the list of
favored rides at the same time. The current con-
gestion of the rides would be shown on the dis-
player ahead. Then based on the information, the
visitors can make a decision where to go as the
next ride device. Note that whole process should
be finished within a specific time limit. The time
limit refers to how long time it takes for the visi-
tor to pass the display device. The time from de-
tecting an ID to displaying the information sho-
uld be within the time limit. Otherwise, the proc-
ess for the ID had better be thrown. In this exam-
ple, we should consider the priority of the visi-
tors. If they would purchase the express tickets,
they will be assigned to have higher priority.

These two scenarios have some common-
alities that every sensor data should be processed
in real time and be shown at the right time. If
they cannot be processed in real time and at the
right time, the data had better be thrown. The
sensor data of higher priority make the progress
of precedent sensor data be stopped or abandoned.
However, sophisticated methods to estimate the
queuing time that is valuable in making a deci-
sion if the data processing can be finished within

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 5

a required time have been so far rare. Hence, es-
timating the queuing time of the successive sen-
sor data under the process of precedent sensor
data is very useful for the scheduler of real-time
ubiquitous computing environment.

3. Related Works

Context information is a set of data which
come from sensors or sensory network that sur-
round the user’s space. Context information is
useful to make an individual context-aware serv-
ice that enables natural interface. To do so, huge
sensor data need to be summarized, interpreted,
reorganized or reasoned according to the service
objectives. To be actually used in the real-time
ubiquitous computing environment, sensor data
processing methods must deal with scalability
issues. To accomplish this issue, first, sensor data
filtering method can be used. Using query com-
mands or pre-defined rules are executed when-
ever sensor data stream arrives at the context-
aware subsystem (Musolesi, 2008). Second, ma-
chine learning algorithms such as data mining
method can be applied to identify and summarize
sensor data set to provide condensed yet valuable
context data set (Hastie et al., 2001). For in-
stance, in case we use smart sensors, the machine
learning algorithm can be used when the smart
sensor or cluster head can preprocess the huge
volume of sensor data before sending to central
data processing unit. This will enhance scal-
ability and at the same time security concerns. In
addition, Random Decrement Technique (RDT),

which reflects the space’s dynamic features in
choosing a sensor data gathering strategy, can ap-
ply this preprocessing approach (Sim et al.,
2011). Next, context prediction method can be
considered to accomplish this scalable sensor da-
ta processing method. Based on previous context
data history, context prediction method can iden-
tify estimated context data value before the event
really happens. The context prediction method is
more scalable than any other sensor data process-
ing methods, even though the estimation perform-
ance in terms of accuracy might not be superior
to the competing non-prediction methods. Hence,
context prediction method is suitable in develop-
ing scalable and less-elaborate real-time ubiq-
uitous environment such as mobile shopping do-
main, rather than healthcare or security preserv-
ing domains. DSMS is another technology that
can consider context-awareness in scalable sensor
data processing method. DSMS differentiates its
way of sensor data management with DBMS in
that DSMS can deal with continuously arriving
data stream. This capability makes it possible to
be applied in network monitoring of sensor net-
work (Galob and Ozsu, 2003). STREAM, devel-
oped by Stanford University, is a representative
DSMS tool has CQL (Continuous Query Lan-
guage), which is able to perform query comma-
nds in a continuous manner (Arasu et al., 2004).

The essential part of setting up optimal
scheduling for sensor data processing is to esti-
mate queuing time after arriving sensor data from
sensory network. Accordingly, algorithm for que-
uing time estimation will be crucial for the sche-

KYUNG WOO KANG․OHBYUNG KWON

6 지능정보연구 제17권 제1호 2011년 3월

duling. The central unit of queuing time estima-
tion is prioritizing sets of sensor data. Prioritiz-
ing sets of sensor data are generated in difference
time frames is another crucial task for user-ac-
ceptable ubiquitous services in terms of time-
liness. For example, RM (Rate Monotonic) per-
forms data processing based on the meta-knowl-
edge that the shorter the cycle time to process a
task, the higher should the task processing pri-
ority. On the other hand, EDF (Earliest Deadline
First) algorithm increases the priority of the task
processing when the time to finish is approaching
(Liu, 2000; Lee et al., 2010).

4. Queuing Time Computation for
Sensor Data Processing

4.1 Target

For computing the queuing time in re-
al-time ubiquitous computing environment, sen-
sor data processing is defined as follows: The
ubiquitous middleware is assumed to consist of
n phases which are denoted by P1, P2, P3, …, Pn.
The number n varies according to the application
of ubiquitous environment. Each sensor data is
written in S. In the same way as the series of
phases, a sequence of sensor data can be denoted
by S1, S2, S3, …, Sm in the arrival order. <Table
1> shows two sensor data S1, S2 where S1, S2 are
called precedent, and successive, sensor data,
respectively. Let us suppose there is a constraint
that any phase is not able to process more than
one sensor data simultaneously. However, if ubi-

quitous middleware operates in multiple phases,
it is possible to operate multiple processing of
sensor data at the same time. <Table 1> illus-
trates the expected processing time of each sen-
sor data in the phases. In order to increase the
effectiveness of ubiquitous middleware, we need
to set the minimum waiting time of the succes-
sive sensor data in relation to the precedent sen-
sor data, and the setting of waiting time is calcu-
lated according to the schedule programmed in
the ubiquitous middleware. The waiting time and
latency are important factors to measure the per-
formance of real-time system (Bumbalek et al.,
2010; Schurgers et al., 2002). Furthermore, these
times could cause the service loss when service
time is too long from when the service is reque-
sted. The expected processing time of each sen-
sor data in each phase could be estimated with
the quantity of data and forecasted loading. The
quantity of data can be computed with the amo-
unt of data in queue, the transition of the amount
and the slope of the transition. The load of the
ubiquitous middleware can be forecasted with
several methods but the forecasting is out of the
scope of this research.

 <Table 1> The Expected Time for Processing

Sensor Data in each Phase

Sensor
data

Time
Order

P1 P2 P3 … Pn

S1 t11 t12 t13 … t1n 1

S2 t21 t22 t23 … t2n 2

The successive sensor data S2 should wait

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 7

for the precedent sensor data S1 during following
time;

D = min1≤j≤n({d j|∑1≤i≤j t1i = d j+∑1≤i≤j-1 t2i}

S2 begins to show the result at the response
time R, which is acquired from adding the wait-
ing time to total processing time.

R = D+∑1≤i≤n t2i

If the response time of S2 exceeds the lim-
ited time that real-time ubiquitous environment
sets, then S2 should be thrown away from queue
and the successive sensor data of S2 should be
selected for computing the response time of it. In
order to minimize the response time, the waiting
time should be minimized. In this paper, an algo-
rithm for computing minimum waiting time is
proposed for minimizing the response time in the
real-time ubiquitous environment.

4.2 Rules

The minimum time taken for i-th sensor
data Si to finish k-th phase Pk can be defined as
following;

T i(k) = ∑1≤j≤ktij

When i-th sensor data Si is precedent and
j-th sensor data Sj is successive, the time for
which Sj should wait Si finishing k-th phase Pk
is Tij(k).

T ij(k) = T i(k)-T j(k-1) where T j(0) = 0

When these formulas are applied to whole
phases, the waiting time D can be got as follow-
ing;

D = max1≤k≤nT ij(k)

D is the waiting time of the successive sen-
sor data under the condition that it is not allowed
to pass the precedent sensor data. If the precedent
sensor data should be processed on a phase but
the successive sensor data does not have to be
done on the same phase, the successive one
could be allowed to pass the precedent one on
that phase. This fact can induce some rules as
following

Rule 1: Sequential Processing Rule
Condition : (tik ≠ 0 and tjk ≠ 0) and (Tij(k) >

0 and Tji(k) > 0) for 1 ≤ k ≤ n
•If Si is the precedent sensor data, Sj

should wait for Tij(k).
•If Sj is the precedent sensor data, Si

should wait for Tji(k).
If two sensor data arrive at the same time,

these sensor data should be processed sequen-
tially. The precedent one is eligible to be proc-
essed prior to the successive one and the succes-
sive one should wait for the waiting time if the
successive one does not have higher priority. The
waiting time can computed using Rule 1.

Rule 2 : Passing Rule
Condition : (tik ≠ 0 and tjk ≠ 0) and (Tij(k) < 0

or Tji(k) < 0) for 1 ≤ k ≤ n

KYUNG WOO KANG․OHBYUNG KWON

8 지능정보연구 제17권 제1호 2011년 3월

• If Tij(k) ≤ 0 and Si is the precedent sen-
sor data, Sj does not need to wait.

• If Tji(k) ≤ 0 and Sj is the precedent sen-
sor data, Si does not need to wait.

This condition means that the precedent
one is being processed at (k-1)-th phase and the
successive one does not need to be processed at
the same phase. Therefore the successive one is
eligible to enter k-th phase prior to the precedent
one.

Rule 3 : Independent Processing Rule
Condition : (tik = 0 or tjk = 0) for 1 ≤ k ≤ n

• One sensor data does not need to wait
for the other one since they do not share
k-th phase Pk.

This condition says indicates that at least
one sensor data does not need to be processed at
k-th phase, that is, two sensor data do not run in-
to each other at the phase. Therefore two sensor
data do not disturb each other.

The waiting time D can be derived using
Rule 1, Rule 2 and Rule 3 as follows :

D = min({d|Tij(k)-d ≤ 0 or Tji(k)+d ≤ 0
 for 1 ≤ k ≤ n where tik ≠ 0, tjk ≠ 0}

Moreover, following fact can be disco-
vered based on three rules. If (tjk = 0 and Tij

(k-1)-D ≤ 0 and Tji(k+1)-D ≤ 0 for 1 ≤ k ≤ n)
is true, the successive sensor data Sj could pass
the precedent sensor data Si at the phase Pk.
Likewise, if (tik = 0 and Tji(k-1)-D ≤ 0 and Tij

(k+1)-D ≤ 0 for 1 ≤ k ≤ n) is true, the succes-

sive sensor data Si could pass the precedent sen-
sor data Sj at the phase Pk.

To induce the three rules, let’s suppose that
two sensor data arrive the queue at the same time
and queuing order is assigned arbitrarily. Later
on, the waiting time will be defined without the
assumption. The arrival times of the sensor data
Si, Sj are written in ai, aj where ai ≠ aj. The inter-
val time between the two arrival events is either
ai-aj or aj-ai. If Sj is a successive one, the new
waiting time T´ij(k) for which Sj should wait be-
fore k-th phase Pk can be defined as follows:

T´ij(k) = Ti(k)+ai-Tj(k-1)-aj = Tij(k)+ai-aj

Rule 1, Rule 2 and Rule 3 also should be
modified as T´ij(k) from Tij(k). The modified rules
can be applied to obtain the new waiting time D´

D´= min({d|T´ij(k)-d ≤ 0 or T´ji(k)+d ≤ 0
 for 1 ≤ k ≤ n where tik ≠ 0, tjk ≠ 0}

T´ij(k) and D´ help to compute the waiting
time of successive sensor data if the number of
precedent sensor data is greater than 1. If there
are multiple sensor data in the queue and some
of them under the process of ubiquitous middle-
ware, the waiting time of a new arriving sensor
data can be computed with the processing time
of all precedent sensor data. In this paper, Algo-
rithm 1 is proposed for the computation.

Algorithm 1 : Computation of waiting time for
the precedent sensor data

Input : Processing time of precedent sensor data

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 9

(S1, S2, … , Sm) and successive sensor
data (Sl)

Output: Waiting time (D´l) of the successive sen-
sor data (Sl)

Assumption: Ubiquitous middleware consists of
n phases (P1, P2, … , Pn).

1. Dl = al

2. Repeat
3. For i = 1 to m
4. If ai ≤ al Then
5. T´i(k) = ∑1≤j≤k tij for 1 ≤ k ≤ n
6. T´l(k) = ∑1≤j≤k tij+al-ai for 1 ≤ k ≤ n
7. Else
8. T´i(k) = ∑1≤j≤k tij+ai-al for 1 ≤ k ≤ n
9. T´l(k) = ∑1≤j≤k tij for 1 ≤ k ≤ n
10. End If
11. T´il(k) = T´i(k)-T´l(k-1) and T´li(k)
 = T ĺ(k)- T í(k-1) where T í(0) = 0
 for 1 ≤ k ≤ n
12. D´= min({d|T´il(k)-d≤0 or T´li(k)+d ≤ 0
 for 1 ≤ k ≤ n where tik≠0, tjk ≠ 0}
13. aj = aj+D´
14. End For
15. Until no change of aj

16. Dl = al-Dl

Note that for-loop begins at line 3. In the
loop, the i-th iteration computes the waiting time
which Sl waits for during the process of a prece-
dent sensor data Si. The iteration begins with the
first precedent sensor data S1 since the sequence
of all precedent sensor data is arranged in the ar-
rival order, that is, the order says the FCFS (First-
Come First-Service) priority. One iteration may

not be sufficient to compute the final waiting
time because all precedent sensor data may influ-
ence the successive sensor data. Therefore once
the waiting time of the successive sensor data is
changed by one precedent sensor data, it should
be checked whether the waiting time might be al-
so changed by the other precedent sensor data.
The work should continue until the waiting time
is not changed any longer. In the Algorithm 1,
the Repeat-Until is used for the work. The loop
is terminated if the new waiting time is not influ-
enced by any precedent sensor data. New waiting
time becomes the final waiting time of the suc-
cessive sensor data.

5. Experiments

In Section 3, we proposed several formulas
for computing the queuing time of the sensor da-
ta, that is, how long sensor data should wait be-
fore being processed by real-time ubiquitous
computing environment. The queuing time is the
minimum waiting time under the given con-
straints and should not influence precedent sen-
sor data proceeding. In order to evaluate the ac-
curacy of our formulas and the proposed algo-
rithm, we experimented with typical hypothetical
data under several situations.

For the experiment, we have implemented
and compared the computation schema described
for queuing time in Section 3. In the first experi-
ment, the waiting time between two sensor data
is computed. The second experiment shows the
waiting time among multiple sensor data.

KYUNG WOO KANG․OHBYUNG KWON

10 지능정보연구 제17권 제1호 2011년 3월

<Table 2> Kinds of Schemes

Non Stop Stop for Higher Priority

No Pass
Scheme 1 : The first-come sensor data always is
processed first in all phases. Every sensor data can
proceed without a stop.

Scheme 2 : The sensor data of higher priority is
allowed to proceed first if two sensor data should be
processed in the same phase. The sensor data of
lower priority should stop for the higher.

Pass

Scheme 3 : The first-come sensor data is selected
first by ubiquitous middleware. Then the sensor data
have other sensor data pass on condition of
non-stop.

Scheme 4 : The sensor data of lower priority should
stop for the higher to proceed. Pass is allowed
between sensor data in all phases on condition of
no stop.

<Table 3> Experiment Data

Sensor Data
Arrival Time
(ms)

The processing Time(ms)

P1 P2 P3 P4 P5 P6

Set 1
S1 0 100 100 300 100 0 300

S2 10 100 200 0 200 300 0

Set 2
S1 0 100 100 200 100 300 0

S2 20 0 200 0 100 0 300

Set 3
S1 0 100 100 0 200 0 100

S2 30 0 100 200 0 300 100

Set 4
S1 0 0 200 200 300 0 100

S2 40 100 0 200 0 300 100

The first experiment is divided into four
kinds of schema. There are two criteria for classi-
fication of the schema. The first criterion is
whether successive sensor data is allowed to pass
precedent sensor data or not. Second one is
whether the sensor data consider the priority of
sensor data. If the successive sensor data have
higher priority than the precedent, the precedent
should stop for letting the successive pass. <Table
2> shows 4 kinds of schemes.

It is supposed that the expected processing
time of every sensor data can be forecasted for
this experiment. <Table 3> shows four sets of
experimental data each of which consists of the

expected processing time for a pair of sensor
data. S1 is the precedent and S2 is the successive.
In the experiment considering priority, we as-
sume that S2 has the higher priority than S1.

<Table 4> shows the delay time which the
successive sensor data or the sensor data of the
lower priority should wait for when the data sets
of <Table 3> are applied to each scheme.

The schemes of allowing pass (Scheme 2,
Scheme 4) generate the shorter waiting time than
the Schemes of no pass (Scheme 1, Scheme 3)
on the same condition respectively. The schemes
of stopping for higher priority (Scheme 3, Scheme
4) show better result than the schema of non-stop

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 11

<Table 4> Waiting Time(ms)

 Data Set
 Scheme

Set 1 Set 2 Set 3 Set 4

Scheme 1 290 480 170 360

Scheme 2 290 280 170 260

Scheme 3 210 120 330 140

Scheme 4 210 120 30 140

<Table 5> Multiple Sensor Data in the Queue

Data
Arrival Time
(ms)

Expected Processing Time(ms)

P1 P2 P3 P4 P5 P6

S1 0 500 0 0 100 400 0

S2 0 0 300 100 100 0 100

S3 0 0 200 100 200 0 200

S4 0 0 0 300 100 100 0

S5 40 100 100 0 200 0 100

S6 50 0 100 200 0 300 100

S7 60 0 200 200 300 0 100

S8 70 100 0 200 0 300 100

<Table 6> Waiting Time

S1 S2 S3 S4 S5 S6 S7 S8

0 0 300 0 560 750 840 1130

(Scheme 1, Scheme 2) but not always. The wait-
ing time Scheme 3 makes with Set 3 is worse
than Scheme 1. With most other sets, the results
of Scheme 3 and Scheme 4 are better than
Scheme 1 and Scheme 2. <Table 4> shows that
ubiquitous middleware had better compute the
waiting time with Scheme 4(stopping for higher
priority and allowing pass).

We performed the second experiment for
computing the waiting time when multiple sensor
data queue in arrival order. Algorithm 1 is used
for computing the waiting time of a successive
sensor data for multiple precedent sensor data.

<Table 5> shows 8 experimental sensor data with
the expected processing time of each phase. The
arrival time is the time when each sensor data be-
gin to queue.

The queuing time of each sensor data can
be shown in <Table 6> as an experimental result.

In <Table 6>, S3 should wait for 300ms
but S4 could be processed as soon as it arrives.
Since there is no processing time for S4 at phases
P1 and P2, S4 could pass while S1, S2 and S3 are
being processed at these phases. S3 could pass S1
but could not pass S2 so it should wait. Likewise,
S6 could pass S1, S5 but other sensor data give

KYUNG WOO KANG․OHBYUNG KWON

12 지능정보연구 제17권 제1호 2011년 3월

<Table 7> Sensor Data of Higher Priority

Data
Arrival Time
(ms)

Processing Time(ms)

P1 P2 P3 P4 P5 P6

S9 100 0 100 0 100 0 100

<Table 8> The New Waiting Times of All Sensor Data(ms)

S9 S1 S2 S3 S4 S5 S6 S7

0 0 200 400 0 660 850 940

it a waiting time. If it begins to be processed af-
ter the waiting time, it collides with S1, S5 at the
same phase unluckily. The collision makes the
waiting time longer. S6 should submit to the lon-
ger waiting time because it arrives late.

In the previous experiment, the successive
sensor data should submit to the longer waiting
time in most cases. If the sensor data has a high-
er priority, it is allowed to be processed first with
stopping precedent sensor data. For the experi-
ment of stopping for higher priority, we test
Scheme 4 with the test data of <Table 5>. It is
assumed that the successive sensor data of higher
priority is S9 and the processing time of it is
shown in <Table 7>.

When S9 arrives, S1, S2, S4 are under proc-
ess and other sensor data wait in the queue. S1,
S2, S4 are stopped and the waiting time of each
sensor data should be computed again since S9
has the higher priority. The new waiting times of
all sensor data are shown in <Table 8>. We drop
the last sensor data S8 in the table since the
length of queue is assumed to be 8.

S1, S4 keep being processed since they will
not collide with S9 until last phase. S2 meets it

at P2 so S2 should give the phase to it and wait.
The new waiting time of S2 let it collide with an-
other sensor data. Finally the waiting time of S2
becomes 200ms. The other queued sensor data
should wait for 100ms more for S9 arriving.

6. Conclusion

This paper proposed an algorithm which
computes estimated queuing time of sensor data
which are continuously arrived from sensory net-
work under real-time ubiquitous environment.
Decreasing the queuing time will more likely to
increase the volume of simultaneously processed
sensor data and hence improve the real-time
ubiquitous environment in terms of reliability.
Four different methods were considered to com-
pute the estimated queuing time using experi-
mental data. As expected, we observed the best
results in case of allowing prioritization of sensor
data. Moreover, based on these findings, we per-
formed a computational experiment which esti-
mates queuing time of newly arriving sensor data
by referring the elapsed time to processing pre-
ceding sensor data.

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 13

Since legacy studies have assumed small-
scale ubiquitous environment with a limited num-
ber of sensors, they seldom coped with scalability
and time to service issues. However, actual do-
mains to apply the ubiquitous systems are much
larger scale such as shopping malls, streets and
even u-cities. For example, u-city project, which
is an integrated set of multi-domain u-services
for many people, should consider tremendous
amounts of sensor data at a time generated in
considerable number of sensors. Moreover, if the
ubiquitous services aim individualized and timely
service for the people who are walking and even
driving, then these must require scalability free
context-aware system. The start point of imple-
menting scalability free context-aware system is
a rapid scheduling of processing sensor data.
Hence, the results of this paper will contribute to
satisfy the necessary condition for scalability free
context-aware system in real-time ubiquitous en-
vironment. First of all, real-time multi-agent
based scheduling can be supported by the algo-
rithm proposed in this paper. Real-time mul-
ti-agent based scheduling is a kind of decision
making problem which decides the priorities of
the tasks of the agents (Garvey and Lesser, 1993).
Second, our algorithm can be applied in mobi-
lity-conscious scheduling problems which con-
sider fast moving users or mobile sensors. For
example, context aware applications embedded in
intelligent robots, real-time sensor data process-
ing, tracking mobile object problems using mo-
bile RFID, RTLS (Real Time Location System),
and remote monitoring system can be supported

by the proposed algorithm (Nam et al., 2008).

References

Arasu, A., B. Babcock, S. Babu, J. Cieslewicz,
M. Datar, K. Ito, R. Motwani, U. Srivasta-
va, and J. Widom, STREAM : The Stanford
Data Stream Management System, Technical
Report. Stanford InfoLab, 2004.

Bumbalek, Z., J. Zelenka, and L. Kencl, e-Scribe :
Ubiquitous Real-Time Speech Transcription
for the Hearing-Impaired, http://www.rdc.
cz/download/publications/escribe.pdf.

Galob, L., M. T. Ozsu, “Issues in Data Stream
Management”, ACM SIGMOD Record, Vol.
32, No.2(2003), 5～14.

Garvey, A. and V. Lesser, Design-to-time Real-
Time Scheduling, IEEE Transactions on Sys-
tems, Man and Cybernetics, Vol.23, No.6
(1993).

Hastie, T., R. Tibshirani, and J. Friedman, The
Elements of Statistical Learning : Data Min-
ing, Inference, and Prediction, Springer,
2001.

Hatala, M., R. Wakkary, L. Kalantari, Rules and
ontologies in support of real-time ubiquitous
application, Web Semantics, (2005), 5～22.

Lee, B., S. Lim, J. Kim, “Scalable real-time mo-
nitoring system for ubiquitous smart space”,
Information Processing Letters, Vol.110
(2010), 294～299.

Liu, J. W. S., Real-Time Systems, Prentice Hall,
2000.

Musolesi, M., “Real-Time Ubiquitous Urban Sen-
sing and Modelling”, IEEE Internet Com-
puting, Vol.12, No.4(2008), 12～21.

Nam, M., M. Z. Al-Sabbagh, J. Kim, M. Yoon,
C. Lee, and E. Y. Ha, “A Real-Time

KYUNG WOO KANG․OHBYUNG KWON

14 지능정보연구 제17권 제1호 2011년 3월

Ubiquitous System for Assisted Living :
Combined Scheduling of Sensing and Com-
munication for Real-Time Tracking”, IEEE
Transactions on Computers, Vol.57, No.6
(2008), 795～808.

Schurgers, C., V. Tsiatsis, S. Ganeriwal, and M.
Srivastava, “Optimizing Sensor Networks in
the Energy-Latency-Density Design Space”,

IEEE Transaction on Mobile Computer, Vol.
1, No.1(2002).

Sim, S., J. F. Carbonell-MArquez, B. F. Spencer
Jr., and H. Jo, “Decentralized random decre-
ment technique for efficient data aggrega-
tion and system identification in wireless
smart sensor networks”, Probabilistic Engin-
eering Mechanics, Vol.26(2011), 81～91.

Queuing Time Computation Algorithm for Sensor Data Processing in Real-time Ubiquitous Environment

지능정보연구 제17권 제1호 2011년 3월 15

Abstract

실시간 유비쿼터스 환경에서 센서 데이터 처리를 위한

대기시간 산출 알고리즘

1)강경우*
․권오병**

실시간 유비쿼터스 환경은 센서로부터 얻어낸 데이터를 기반으로 상황을 인지하고 사용자에게 적절한

반응을 보이기까지 제한된 시간 내에 모든 것을 처리해야 한다. 전체적인 센서 데이터 처리는 센서로부

터의 자료 확보, 상황 정보의 획득, 그리고 사용자로의 반응이라고 하는 과정을 거친다. 즉, 유비쿼터스

컴퓨팅 미들웨어는 입력된 센서 자료 및 데이터베이스 또는 지식베이스로부터 일련의 자료들을 활용하

여 상황을 인식하며, 그 상황에 적합한 반응을 하게 된다. 그런데 실시간 환경의 특징 상 센서데이터가

들어오면 각 가용 자원들을 검색하고 그 곳에 있는 미들웨어가 데이터를 처리 할 경우 어느 정도의 대기

시간이 필요한지를 결정해야 한다. 또한 센서 데이터 처리의 우선순위가 높을 때는 미들웨어가 현재 처

리중인 데이터를 언제 처리를 중지하고 얼마나 대기시켜야 하는지도 결정해야 한다. 그러나 이러한 의사

결정에 대한 연구는 아직 활발하지 않다. 따라서 본 논문에서는 유비쿼터스 미들웨어가 이미 센서 데이

터를 처리하고 있고 동시에 새로운 센서 데이터를 처리해야 할 때 각 작업의 최적 대기시간을 계산하고

스케줄링하는 알고리즘을 제안한다.

Keywords : 실시간 시스템, 유비쿼터스 컴퓨팅, 센서 데이터 처리, 상황인식 시스템

* 백석대학교 정보통신학부 부교수
** 경희대학교 경영대학 교수

KYUNG WOO KANG․OHBYUNG KWON

16 지능정보연구 제17권 제1호 2011년 3월

저 자 소 개

Kyung Woo Kang

Presently an associate professor at Division of Information and Communi-

cation, Baekseok University, South Korea, where he initially joined in

2000. He received the BS degree at Kyung Sung University in 1990, and

MS and PhD degree in Computer Science at KAIST in 1992 and 1998,

respectively. From 1998 to 2000, he worked for Super Computing Center

at ETRI. In addition, he is now a visiting professor at Singapore Nanyang Technology

University. His current research interests include Ubiquitous Computing, Grid Computing,

and Compiler Theory.

Ohbyung Kwon

Presently a professor at Kyung Hee University, South Korea, where he in-

itially joined in 2004. In addition, he is now working for Department of

Information and Decision Systems at San Diego State University as an ad-

junct professor. In 2002, he joined Institute of Software Research Interna-

tional (ISRI) at Carnegie Mellon University to perform myCampus project

on semantic web and context‐aware computing. He received the MS and PhD degree in

Management Information System at KAIST (Korea Advanced Institute of Science and Te-

chnology) in 1990 and 1995, respectively. His current research interests include ubiquitous

computing services, agent technology, mobile commerce, context‐aware system develop-

ment, case‐based reasoning, and DSS. He has published various papers in leading in-

formation system journals such as Decision Support Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

