In order to evaluate the Capability of ETM+ remotely- sensed data to provide 'Forest-shrub land-Rangeland' cover type map in areas near the timberline of northern forests of Iran, the data were analyzed in a portion of nearly 790 ha located in Neka-Zalemroud region. First, ortho-rectification process was used to correct the geometric errors of the image, yielding 0/68 and 0/69 pixels of RMS. error in X and Y axis, respectively. The original and panchromatic bands were fused using PANSHARP Statistical module. The ground truth map was made using 1 ha field plots in a systematic-random sampling grid, and vegetative form of trees, shrubs and rangelands was recorded as a criteria to name the plots. A set of channels including original bands, NDVI and IR/R indices and first components of PCI from visible and infrared bands, was used for classification procedure. Pair-wise divergence through CHNSEL command was used, In order to evaluate the separability of classes and selection of optimal channels. Classification was performed using ML classifier, on both original and fused data sets. Showing the best results of $67\%$ of overall accuracy, and 0/43 of Kappa coefficient in original data set. Due to the results represented above, it's concluded that ETM+ data has an intermediate capability to fulfill the spectral variations of three form- based classes over the study area.
이 논문에서는 촬영 시기 및 촬영 모드(주파수, 편파, 입사각)에 있어서 여러 가지 조건을 가지는 다양한 SAR 자료로부터 특징을 추출하여 토지 피복 항목과의 상호 연관성을 분석하였다. 현재까지 가용한 인공위성 SAR 영상의 촬영 조건을 고려하여 다음의 두 가지 경우로 구분하여 특징을 추출하였다. 첫째, 단일 모드로 다중 시기에 얻어진 SAR 자료로부터 긴밀도, 시간적 변이도, 주성분 변환에 의한 특징들을 추출하였다. C-밴드인 ERS-1/2, ENVISAT SAR, Radarsat-1 자료와 L-밴드인 JERS-1 SAR 자료를 대상으로 이러한 특징들을 각각 추출하였으며, 일반적인 토지 피복 항목과의 연관성 분석을 통해 다중 센서의 특성 차이를 비교 분석하였다. 여러 특징들 중에서 Tandem 긴밀도는 대체적으로 토지 피복 항목간 구별력이 가장 좋게 나타났다. C-밴드 SAR 자료의 장기간 긴밀도에서는 도심 지역의 구분이 용이하였으며, 시간적 변이도에서는 모든 센서 자료에서 논 지역이 가장 높은 값을 나타내었다. 또한 시계열 후방 산란 계수와 긴밀도의 주성분 변환에 기반한 특징들에서는 토지 피복과 관련된 부가 정보 추출이 가능하였다. 둘째, 다중모드(편파, 입사각)로 비슷한 시기에 얻어진 SAR 자료로부터 편파비와 다중 채널 변이도를 주요 특징으로 추출하여 토지 피복 항목별로 비교하였다. 그 결과, VH/VV 편파비로부터 산림과 밭 항목의 구분력이 향상되는 것으로 나타났다. 이 연구의 분석 결과는 향후 다양한 모드의 시계열적 SAR 자료 및 지상 산란계 실험을 통한 다양한 사례 연구 결과와 결합된다면, SAR 자료를 이용한 토지 피복 분류의 정확도 향상을 위한 기초 정보로 활용될 수 있을 것으로 기대된다.
It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.
This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.
아로마는 오래전부터 치유를 위하여 사용되어 왔고, 아로마의 종류에 따라서 치유하는 효능이 다르다. 아로마의 분류를 체계적으로 하기 위하여 가스센서 어레이 시스템을 제작하였다. 센서에서 출력한 신호를 신경회로망의 입력으로 사용하여 아로마를 분류하였다. 신경회로망은 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망을 사용하였다. 실험결과 라벤더(Lavendula angustifolia), 쟈스민 (Jasminum Officiale), 오렌지(Citrus Sinensis), 로만 카모마일(Chamaemelum nobile)를 성공적으로 4개의 부류로 분류하였고 오류가 없었다.
현재 컴퓨팅 기술은 유비쿼터스 컴퓨팅 환경에서 컨텍스트 인식을 위한 지능화된 시스템 구조를 요구하고 있다. 컨텍스트를 인식하기 위한 지능화된 시스템은 에이전트를 기반으로 하고 있으며, 사용자를 인식하기 위한 센서의 정보와 서비스를 지원하기 위한 프레임을 필요로 한다. 따라서 본 논문에서는 각 센서와 서비스들을 동적으로 연결하고, 각종 컨텍스트를 안정적으로 지원할 수 있는 3-Tier 컨텍스트 인식 처리 서버/클라이언트 구조를 제안한다. 제안하는 시스템의 구조는 사용자의 상황 정보를 인식하는 클라이언트 계층과 인식된 상황정보를 처리하기 위한 응용처리 에이전트 서버(APAS) 계층, 이 두 계층을 관리하기 위한 관리서버(Management Server)로 구성된다. 또한 이 구조에서는 정교한 서비스를 제공하기 위하여 사용자의 정보는 동적 프로파일로 구성되어 있다.
본 논문에서는 노약자의 관찰을 위하여 움직임 센서를 이용하여 움직인 정보를 이용하는 방식을 제안한다. 사람이 물체를 움직일 때에 물체에 부착된 3축 가속도 센서를 이용해 움직임 데이터를 전달받고 전달받은 움직인 데이터를 SVM을 이용하여 물체의 움직임을 추정한다. 제안한 시스템의 유용성을 확인하기 위하여 실험에 이용한 데이터들을 데이터베이스화 하여 신경회로망의 학습에 사용하였고, 일상적으로 걸어갈 때, 빠르게 뛰어갈 때, 넘어질 때의 3가기 경우의 움직임을 제대로 검출해 내는가에 대한 실험을 하였다. 실험 경과 80% 이상의 검출 성공률을 볼 수 있었다.
MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
마이크로전자및패키징학회지
/
제31권2호
/
pp.45-53
/
2024
The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.
This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.
In this paper, we improved the O-Ring Measurement System(O-R MS) based on oriental constitutional theory of four classes for objectify constitutional diagnosis by O-Ring test method which is one of effective methods in several constitutional diagnosis. The result of using in a half of year, some problems are pointed out. To settle these problems, we improved the actuator, display module, sensor module, and hardware of controller. Also, the software is supplemented to using the more decision parameters. It is estimated to have a high practical use for the objectified constitutional diagnosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.