• Title/Summary/Keyword: sensor Things

Search Result 565, Processing Time 0.022 seconds

Performance Improvement of Air Conditioner Network System using Wireless Sensors Through System Performance Index and Dynamic Power Distribution Control (시스템 성능 지수 및 동적 전력분산 제어를 통한 무선센서를 이용한 에어컨 네트워크 시스템의 성능 개선)

  • Choi, Ho-seek;Kwon, Woo-hyen;Yoon, Byung-keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Wireless sensors have been developed in numerous ways for enhancing the convenience of installation, management and maintenance of sensors. Energy harvesting wireless sensors, which can collect energy from the external environment for permanent usage without the need of recharging and exchanging batteries, have been developed and employed used in Internet of Things and at various industrial sites. Energy harvesting wireless sensors are significantly affected by the sensor lifespan to sudden variation in the external environment. Furthermore, reduction in the sensor operating timespan can greatly affect the characteristics of the devices connected through a network. In this paper, a system performance index is proposed that can comprehensively evaluate the lifespan of a solar cell wireless sensor, determine the characteristics of devices connected to the associated network, and recommend dynamic power distribution control for improving the system performance index. Improvement in the system performance index was verified by applying the proposed dynamic power distribution control to an air conditioner network system using a solar cell wireless sensor. Obtained results corroborate that the dynamic power distribution control can extend the lifespan of the incorporated wireless sensor and reduce the air conditioner's power consumption.

A Survey of Trust Management in WSNs, Internet of Things and Future Internet

  • Chang, Kai-Di;Chen, Jiann-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.5-23
    • /
    • 2012
  • Nowadays, most researchers and manufacturers always pay attention on wireless sensor networks (WSNs) due to its potential applications in many regions such as military, industrial and civilian areas. WSNs are the basic components of Internet of Things (IoT) and the key to machine-to-machine communications and the future Internet. Also, the security is an essential element for deploying WSNs. Recently the concept of trust-based mechanism was proposed in WSNs such as traditional cryptographic and authentication mechanisms. However, there is lack a survey on trust management for WSNs, IoT even future Internet. In this paper, we discuss the concept and potential application areas of trust management for WSNs and IoT worlds. Furthermore, we survey different trust management issues (i.e., cluster, aggregation, reputation). Finally, future research directions with respect to trust management in WSNs and future IoT world are provided. We give not only simple WSNs for IoT environments but also a simulated bootstrap platform to provide the discussion of open challenges and solutions for deploying IoT in Future Internet.

Design of Wireless Data Transmission and Web Logging System (무선 데이터 전송과 웹 로깅 시스템 설계)

  • Roh, Jae-sung
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.636-641
    • /
    • 2018
  • In recent years, the Internet of things has grown rapidly and is being used in many fields. The function of an Internet device isto collect information in various environments and to provide useful information to users. Due to recent developments in technology, the kinds of Internet devices are increasing and the prices are getting cheaper. In addition, many open source platforms that are easy to use have been developed and are providing convenience to users. In this paper, wireless data transmission and cloud server system based on ESP-12E NodeMCU module was designed and sensor information collected from Internet devices was transmitted to cloud server through WiFi wireless communication. The collected sensor data was saved by creating channel and field in the cloud server and the data of each field was visualized as a graph.

Development Status of Crowdsourced Ground Vibration Data Collection System Based on Micro-Electro-Mechanical Systems (MEMS) Sensor (MEMS 센서 기반 지반진동 정보 크라우드소싱 수집시스템 개발 현황)

  • Lee, Sangho;Kwon, Jihoe;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.547-554
    • /
    • 2018
  • Using crowdsourced sensor data collection technique, it is possible to collect high-density ground vibration data which is difficult to obtain by conventional methods. In this study, we have developed a crowdsourced ground vibration data collection system using MEMS sensors mounted on small electronic devices including smartphones, and implemented client and server based on the proposed infrastructure system design. The system is designed to gather vibration data quickly through Android-based smartphones or fixed devices based on Android Things, minimizing the usage of resource like power usage and data transmission traffic of the hardware.

A Novel Way of Diversifying Context Awareness Based on Limited Event Data of Sensors using Exon-Intron Theory in the Internet of Things Environment (사물인터넷 환경에서 Exon-Intron 이론을 활용한 센서의 제한된 이벤트 데이터 기반 상황인식 다양화 방안)

  • Lee, Seung-Hun;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.675-682
    • /
    • 2021
  • In an environment in which a limited type and number of sensors are used, a demand for acquiring various context information may appear. In this study, a new method for acquiring various context information than before was proposed in an environment in which a limited number of sensors are required. To this end, a clue was obtained from the Exon-Intron theory, which is gaining great interest in the field of biology, and a method for acquiring various context information was proposed based on this. By applying Exon-Intron's selective cutting and combining method, events of each sensor were efficiently cut and each event data was combined and utilized, thereby realizing the diversification of the acquired context information.

Cluster Property based Data Transfer for Efficient Energy Consumption in IoT (사물인터넷의 에너지 효율을 위한 클러스터 속성 기반 데이터 교환)

  • Lee, Chungsan;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.966-975
    • /
    • 2017
  • In Internet of Things (IoT), the aim of the nodes (called 'Things') is to exchange information with each other, whereby they gather and share information with each other through self decision-making. Therefore, we cannot apply existing aggregation algorithms of Wireless sensor networks that aim to transmit information to only a sink node or a central server, directly to the IoT environment. In addition, since existing algorithms aggregate information from all sensor nodes, problems can arise including an increasing number of transmissions and increasing transmission delay and energy consumption. In this paper, we propose the clustering and property based data exchange method for energy efficient information sharing. First, the proposed method assigns the properties of each node, including the sensing data and unique resource. The property determines whether the node can respond to the query requested from the other node. Second, a cluster network is constructed considering the location and energy consumption. Finally, the nodes communicate with each other efficiently using the properties. For the performance evaluation, TOSSIM was used to measure the network lifetime and average energy consumption.

Design and Implementation of Cattle Behavior Detection System based on Internet of Things (사물 인터넷 기반 소 행동 특성 관찰 시스템 설계 및 구현)

  • Lee, Ha-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1159-1166
    • /
    • 2017
  • Cattle behavior detection system based on Internet of Things is designed and implemented by using gyroscope and acceleration sensor, Arduino pro-mini and bluetooth module. The implemented system measures cattle's moving and the measured data are transmitted to smart phone by bluetooth module. They are displayed by 2-dimensional graph on the smart phone and the number of cattle's step are calculated from the graph. The detected and gathered data from the system are analyzed by the proposed algorithm to decide which cows are in the estrus or not, and the proposed system can be used to increase the success rate of artificial insemination in normal estrus by detecting cow's behaviors such as the number of steps and jumping. In this paper, the implemented cattle behavior detecting system are strapped on cattle's leg and it measures cattle behaviors for determining that a cattle is estrus or not by the proposed algorithm. In the future research, the system which lengthens communication distance and increases the number of cattle under the test will be considered and also the measured data will be database for cattle research.

Design of Anomaly Detection System Based on Big Data in Internet of Things (빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계)

  • Na, Sung Il;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.377-383
    • /
    • 2018
  • Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.

A Novel Weighting Method of Multi-sensor Event Data for the Advanced Context Awareness in the Internet of Things Environment (사물인터넷 환경에서 상황인식 개선을 위한 다중센서의 이벤트 데이터 가중치 부여 방안)

  • You, Jeong-Bong;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.515-520
    • /
    • 2022
  • In context awareness using multiple sensors, when using sensor data detected and sent by each sensor, it is necessary to give different weights for each sensor. Even if the same type of sensor is configured for the same situation, sometimes it is necessary to assign different weights due to other secondary factors. It is inevitable to assign weights to events in the real world, and it can be said that a weighting method that can be used in a context awareness system using multiple sensors is necessary. In this study, we propose a weighting method for each sensor that reports to the host while the sensors continue to detect over time. In most IoT environments, the sensor continues the detection activity, and when the detected value shows a change pattern beyond a predetermined range, it is basically reported to the host. This can be called a kind of data stream environment. A weighting method was proposed for sensing data from multiple sensors in a data stream environment, and the new weighting method was to select and assign weights to data that indicates a context change in the stream.

IoT-based Guerrilla Sensor with Mobile Web for Risk Reduction

  • Chang, Ki Tae;Lee, Jin Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.177-184
    • /
    • 2018
  • In case that limited resources can be mobilized, non-structural countermeasures such as 'monitoring using Information and Communication Technology might be one of solutions to mitigate disaster risks. Having established the monitoring system, operational and maintenance costs to maximize the effectiveness might trouble the authority concerned or duty attendant who is in charge. In this respect, "Guerrilla Sensor" would be very cost effective because of the inherent mobility characteristic. The sensor device with the IRIS camera and GPS (Global Positioning System) equipped, is basically battery-operated and communicates with WCDMA (Wideband Code Division Multiple Access). It has a strong advantage of capabilities for 'Disaster Response' with immediate and prompt action on the spot, making the best use of IoT (Internet of Things), especially with the mobile web. This paper will explain how the sensor system works in real-time GIS (Geographic Information System) pinpointing the exact location of the abnormal movement/ground displacement and notifying the registered users via SMS (Short Message Service). Real time monitoring with early warning and evaluation of current situations with LBS (Location Based Service), live image and data information can help to reduce the disaster impact. Installation of Guerrilla sensor for a real site application at Gimcheon, South Korea is also reported.