• 제목/요약/키워드: sensor

검색결과 26,907건 처리시간 0.051초

카메라 기반 강화학습을 이용한 드론 장애물 회피 알고리즘 (Drone Obstacle Avoidance Algorithm using Camera-based Reinforcement Learning)

  • 조시훈;김태영
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.63-71
    • /
    • 2021
  • 드론 자율비행 기술 중 장애물 회피는 드론이나 주변 환경의 손상을 방지하고 위험을 예방할 수 있도록 하는 매우 중요한 기술이다. LiDAR 센서 기반 장애물 회피방식은 비교적 높은 정확도를 보여 최근 연구에서 많이 활용되고 있지만, 단가가 높고 시각 정보에 대한 처리 능력이 제한적인 단점이 있다. 따라서 본 논문은 단가가 상대적으로 저렴하고 시각 정보를 이용한 확장성이 높은 카메라 기반 PPO(Proximal Policy Optimization) 강화학습을 이용한 드론의 장애물 회피 알고리즘을 제안한다. 3차원 공간상의 학습환경에서 드론, 장애물, 목표지점 등을 무작위로 위치시키고, 가상 카메라를 이용하여 전면에 설치된 스테레오 카메라를 통해 스테레오 영상정보를 얻은 다음 YOLOv4Tiny 객체검출을 수행한다. 그리고 난 후 스테레오 카메라의 삼각측량법을 통해 드론과 검출된 객체간의 거리를 측정한다. 이 거리를 기반으로 장애물 유무를 판단하고, 만약 장애물이면 패널티를 책정하고 목표지점이면 보상을 부여한다. 본 방법을 실험한 결과 카메라 기반 장애물 회피 알고리즘은 LiDAR 기반 장애물 회피 알고리즘과 비교하여 충분히 비슷한 수준의 높은 정확도와 평균 목표지점 도달시간을 보여 활용 가능성이 높음을 알 수 있었다.

최신 농업기계 특허 동향 조사 (Analysis of Patent Trends in Agricultural Machinery)

  • 홍순중;김동억;강동현;김진진;강정균;이경환;모창연;류동기
    • 현장농수산연구지
    • /
    • 제23권2호
    • /
    • pp.99-111
    • /
    • 2021
  • 농경지, 농기계, 농작업자 간 IoT 등의 통신 기술을 이용한 유기적인 정보교환을 통해 생산성, 효율성, 수익성을 높이는 지능형 데이터 농업 형태인 커넥티드 팜이 상용화 단계에 있다. 본 연구는 지능형 농업기계의 교육과정과 농업기계 안전교육 성과지표를 개발하고자 ICT, 로봇, 인공지능 등 첨단 기술을 적용한 농업생산의 무인화 및 고효율화 변화에 따른 농업기계의 특허 동향을 조사 분석하였다. 노지용 자동화 기술과 관련해서 미국, 일본, 유럽, 한국의 특허 건수는 각각 541건, 326건, 128건, 85건으로 미국에서의 특허 활동이 가장 활발한 것으로 나타났고, 일본, 유럽, 한국의 순으로 조사되어 한국에서의 농업 자동화 기술이 선진국에 비해 뒤쳐져있는 것으로 조사되었다. 노지 자동화 기술의 세분기술 분야로 보면, 경로 생성 및 추종 기술, 환경 인식을 통한 작업기 제어 기술, 로봇 농작업 시스템 설계 기술, 작물 및 환경 센싱 기술, 수확량 및 품질 모니터링 기술 분야 순으로 출원 점유율이 높은 것으로 나타났다.

Siemens star를 이용한 드론 영상의 품질 평가 (Quality Evaluation of Drone Image using Siemens star)

  • 이재원;성상민;백기석;윤부열
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.217-226
    • /
    • 2022
  • 고정밀 공간정보제작 분야의 활용 측면에서 무인항공사진측량은 촬영된 영상의 정량적인 품질 검증 방법과 인증에 대한 절차와 세부 규정이 미흡한 문제점이 있다. 또한, 영상에 대한 검증 수단이 해상도와 명암의 대비 정도를 동시에 분석 할 수 있는 MTF (Modulation Transfer Function) 분석이 아닌 GSD (Ground Sample Distance) 만으로 품질을 평가하고 있어 유인항공영상보다 품질이 떨어지는 경우도 있다. 이에 본 연구에서는 드론 영상 품질 분석에서 MTF 분석의 필요성을 확인하기 위해 Siemens star를 이용하여 GSD와 MTF 분석을 동시에 실시하였다. 서로 다른 드론 기체와 센서로 동일한 해상도로 타겟을 촬영한 영상을 분석한 결과, GSD에서는 약간 상이한 결과를 나타내었지만, 영상의 해상도와 명암의 대비 정도를 동시에 분석할 수 있는 σMTF 수치는 큰 차이를 나타내었다. 이와 같은 결과로 MTF 분석이 보다 객관적이며 신뢰도 높은 품질분석 방법이라고 결론지을 수 있다. 아울러 작업자가 카메라 센서의 성능, 중복도 및 기체의 성능을 적절하게 판단하여 촬영을 실시하여야만 높은 품질의 드론 영상을 획득할 수 있음을 알 수 있었다. 하지만 본 연구는 제한된 기체와 촬영 조건하에서 취득된 영상으로만 분석을 수행한 결과이다. 따라서 향후 관련 분야의 다양한 실험 데이터를 축척하여 지속적인 연구를 수행하면 보다 객관적이고 신뢰성 있는 결과를 도출할 것으로 기대된다

인간의 삶의 질에 영향을 끼치는 수질(물) 분석을 위한 빅데이터 기반 모니터링 시스템 설계 (Big Data-based Monitoring System Design for Water Quality Analysis that Affects Human Life Quality)

  • 박성훈;서용철;김용환;방승범
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제15권3호
    • /
    • pp.289-295
    • /
    • 2021
  • 오늘날 인간의 삶의 질에 가장 중요하게 미치는 요인은 환경에서 기인된다고 생각된다. 기후변화와 지구 온난화 현상에 따른 폭우, 대설, 지진 등으로 장마, 태풍, 벌채면 붕괴, 미세먼지 등의 발생 빈도가 증가하여 피해 규모가 해마다 커짐에 따라 환경 분석 및 감시 시스템의 중요성은 날로 커지고 있다. 환경의 문제들 중 물(수질)에 의해 발생하는 문제는 그 비중이 매우 높은 바, 도시화, 산업화로 수질 오염사고 발생 때 피해 규모가 대형화 되었으며 사람들 사이에 물 안전망에 대한 우려가 증가하고 있다. 최근 5년간 4대강 유역에서 수질 오염 사고 359건(한강 129, 낙동강 51, 금강 25, 섬진강 및 영산강 19, 기타 85)이 발생하였으며, 이로 인해 물 공급 정지 및 오염된 수돗물 공급 등 사회 전반에 걸처 환경에 직간접적인 피해를 야기하였다. 따라서, 현재 4대강 중심의 수질(물) 관리 시스템에서 중소하천, 지류/지천, 저수지 등으로 수질 모니터링 대상을 확대 함 으로서수질 환경의 불확실성을 최소화할 수 있는 빅데이터 기반 수질 환경 관리 전략체계의 구축이 요구된다. 본 논문에서는 기존의 오랜 기간 축적하여 온 수질 정보 빅데이터를 이용한 인공신경망 미들웨어 구축을 통하여 유용한 수질 분석 정보를 제시 할 수 있는 수질 모니터링 미들웨어 구축방안을 제시하고자 한다.

드론 영상 기반 RGB 식생지수 조합 Support Vector Classifier 모델 활용 콩 도복피해율 산정 (Assessment of Lodged Damage Rate of Soybean Using Support Vector Classifier Model Combined with Drone Based RGB Vegetation Indices)

  • 이현중;고승환;박종화
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1489-1503
    • /
    • 2022
  • 드론(drone)과 센서(senor) 적용기술은 농업분야 작물의 성장 정보에 대한 디지털화를 가능하게 하면서 정밀농업 발전을 한층 가속화하고 있다. 이 기술은 자연재해 발생시 농작물 피해량 산정을 가능하게 하고, 현장 방문조사로 진행되고 있는 농작물재해보험 평가방법의 과학화에 기여할 수 있다. 본 연구는 콩을 대상으로 드론 기반 RGB영상을 취득하여 추출된 식생지수로 도복피해율을 산정하는 방법을 개발하고자 하였다. Support Vector Classifier (SVC) 분류 모델은 Crop Surface Model (CSM) 기반의 도복피해율에 식생지수를 추가하여 식생지수 적용성을 검토하였다. 식생지수 중 Visible Atmospherically Resistant Index (VARI), Green Red Vegetation Index (GRVI) 기반 콩의 도복피해율 분류 정확도는 각각 0.709, 0.705로 높은 분류정확도를 나타내었다. 연구 결과, 드론 기반 RGB 영상은 도복피해율 산정에 매우 유용한 도구로 활용 가능하다는 점을 확인할 수 있었다. 본 연구에서 얻어진 결과는 이상기후로 인한 광역 지역 자연재해에 대한 도복피해 산정 시 Sentinel-2, RapidEye 위성과 더불어 2025년 발사 예정인 농림업중형위성 영상과 연계해 활용 가능할 것으로 기대된다.

농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발 (Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1343-1356
    • /
    • 2022
  • 광학위성영상을 이용해 농작물을 모니터링 할 때 가장 문제가 되는 것은 구름이나 그림자이다. 구름과 그림자의 영향을 줄이기 위해 일정 주기동안 최대 정규식생지수를 선택하는 합성기법이 사용되었다. 그러나, 본 방법은 구름의 영향을 줄이기는 하나, 일정 주기 동안 최대 정규식생지수(Normalized Difference Vegetation Index, NDVI)값만을 사용하기 때문에 NDVI가 감소하는 현상을 신속히 보여주기 어렵다. 이에 따라, 구름의 영향을 최소화하면서 식생의 분광정보를 최대한 유지하기 위한 방안으로 합성 시 여러 환경인자를 정의하고, 이에 대한 점수를 부여하여 합성 시 가장 적합한 화소를 선택하는 방법인 점수 기반 합성기법이 제시되었다. 본 연구에서는 Sentinel-2A/B Level2A 반사율 영상과, 부가정보로 제공되는 구름, 그림자, Aerosol Optical Thickness(AOT), 촬영날짜, 센서천정각 등을 이용한 점수 기반 식생지수 합성기법을 개발하였다. 2021년동안 당진 논지역과 태백 고랭지 배추밭을 대상으로 15일 주기와 한달 주기로 점수기반 합성기법을 적용한 결과, 구름의 영향을 받은 우기만을 제외하고 15일 주기 합성 시 한달 주기에 비해 보다 빠르고 자세한 NDVI값의 변화를 볼 수 있었다. 특정 영상에서는 합성 NDVI영상에서 부분적으로 날짜별 차이가 나타나 공간적으로 이질적인 부분이 보이기도 하는데, 이는 사용한 구름, 그림자 정보의 부정확성으로 인한 것으로 사려된다. 향후 입력정보의 정확도를 향상시키고, Maximum NDVI Composite (MNC) 기반 합성기법과 정량적 비교를 수행할 예정이다.

VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석 (Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data)

  • 이용관;정지훈;장원진;김진욱;김성준
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1385-1394
    • /
    • 2022
  • 본 연구에서는 MODerate resolution Imaging Spectroradiometer (MODIS) 자료를 활용하여 20년(2002-2021)의 중분류 토지피복별 알베도 변화를 분석하고, Visible Infrared Imaging Radiometer Suite (VIIRS)의 10년(2012-2021) 자료를 활용해 MODIS 자료와의 차이를 분석하였다. MODIS와 VIIRS의 알베도 자료는 Bidirectional Reflectance Distribution Function (BRDF) 모델을 활용해 생산된 Sinusoidal Tile Grid 기반 500 m 공간해상도의 일단위 알베도 자료 MCD43A3와 VNP43IA3를 우리나라 범위에 대하여 구축하였다. Python 3.9 기반으로 작성된 코드를 활용하여 Reprojection을 하였으며, Resampling method는 Nearest neighbor를 적용하였다. 알베도 분석에는 단파 영역(Shortwave)의 White sky albedo와 Black sky albedo를 활용하였다. MODIS 자료를 활용한 20년의 알베도 분석 결과, 모든 토지이용에서 알베도가 상승하는 경향이 나타났다. 2000년대(2002-2011)에 비해 2010년대(2012-2021)의 평균 알베도가 산림 지역에서 0.0027의 가장 큰 상승값을 보였고, 그 다음으로 초지가 0.0024의 상승값을 보였다. VIIRS와 MODIS의 알베도를 비교한 결과, VIIRS의 알베도가 0.001에서 0.1 만큼 더 큰 것으로 나타났으며, 이는 영상의 촬영시기에 따른 지표면 반사도와 센서의 특성 차이에 의한 것으로 판단된다.

유출유 모니터링을 위한 해경 항공 영상의 개별정사보정 (Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring)

  • 오연곤;배억안;최경아;이임평
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1479-1488
    • /
    • 2022
  • 해양에서는 선박충돌, 침몰 등으로 인하여 기름이 유출되는 사고가 간헐적으로 일어난다. 이러한 사고가 발생하였을 때 신속한 대책 마련을 위해 유출유 현황을 정확히 파악해야 한다. 이를 위해 해양경찰은 고정익비행기 또는 헬기로 대상 지역을 순찰하며 육안이나 영상 촬영을 통해 확인하는데, 유출유로 오염된 면적과 지도 상의 정확한 위치를 파악하는데 어려움이 있었다. 이에 본 연구는 유출유 현황 파악을 위해 해경에서 수집한 항공 영상을 개별적으로 지상기준점 없이 자동으로 직접 지오레퍼런싱(georeferencing)하여 정사보정하는 기술을 개발한다. 먼저, 영상 등 센서 정보를 가시화한 화면에서 지오레퍼런싱에 필요한 메타정보를 문자인식기술을 통해 추출한다. 추출된 정보를 바탕으로 영상의 외부표정요소를 결정한다. 결정된 외부표정요소를 이용해서 영상을 개별적으로 정사보정한다. 이러한 방법으로 통해 생성한 개별정사영상의 정확도는 수십 미터에서 최대 100 m 정도로 평가되었다. 지상기준점을 사용하지 않았고, 위치와 자세 센서의 관측 오차, 카메라 초점거리 등 내부표정요소의 오차를 고려할 때 상당히 양호한 수준이었다. 해양에서 유출유 오염 지역에 대한 현황 파악을 위해 적절한 수준으로 판단된다. 향후 비행 중 촬영 영상에 대한 실시간 전송이 가능해지면, 제안된 개별정사보정 기술을 통해 실시간으로 개별 정사영상을 생성할 수 있게 된다. 이를 기반으로 유출유 오염 현황에 대한 신속한 파악과 대책 수립에 효과적으로 활용할 수 있다.

KOMPSAT-3 위성의 Time Offset 계산을 통한 항공기 속력 및 고도 추정 (Aircraft Velocity and Altitude Estimation through Time Offset Calculation of KOMPSAT-3 Satellite)

  • 정세정;신현길;김도훈;송아람;이원희
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1879-1887
    • /
    • 2022
  • 본 연구에서는 KOMPSAT-3 위성에서 촬영된 항공기의 속력과 고도를 추정하는 방법을 제안하였다. 이를 위해 KOMPSAT-3 위성의 촬영 방식, 센서의 구조, 그리고 위성의 궤도에 따른 움직임으로 인해 생기는 시차 효과와 이로 인한 밴드 간 촬영 시차인 Time Offset을 계산하였으며, 이 과정에서 고속도로 위를 달리는 화물차를 이용하였다. 또한, 제안 기법에서는 영상 내 항공기 위치의 좌표를 이용해 항공기의 이동 방향, 시차 효과로 인한 이동 방향 등을 계산하였으며, 메타데이터로부터 KOMPSAT-3 위성의 자세 정보를 계산하여 항공기의 속력 및 고도를 추정하였다. 제안 기법을 통해 추정된 값을 automatic dependent surveillance-broadcast (ADS-B)에 기록된 항공기의 속력 및 고도 값과 오차율을 이용하여 비교한 결과, 대형 항공기(I1, I3, S2)에서의 오차율이 경비행기(I2, S2)의 오차율보다 낮아 제안 기법을 이용해 추정한 항공기의 속력과 고도 값이 대형 항공기에서 비교적 높은 정확도를 갖는 것을 확인할 수 있었다.

마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석 (Gas Sorption Analysis of Metal-organic Frameworks using Microresonators)

  • 김하민;최현국;김문갑;이영세;임창용
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.11-16
    • /
    • 2022
  • 금속유기골격체(metal-organic frameworks, MOFs)는 나노사이즈의 기공을 가진 다공성 물질로, 금속이온과 유기리간드의 종류에 따라 기체흡착도 및 기공크기의 조절이 가능하다. 이러한 장점을 이용하여, 기체 포집 및 분리, 그리고 기체센서분야에서 금속유기골격체에 대한 연구가 많이 이루어지고 있다. 신속하고, 정량적인 기체 흡탈착 분석을 위해서는, 센서 표면에 균일한 필름 형태의 다양한 MOF 구조체를 형성해야 한다. 본 총설논문에서는 양극산화알루미늄, 산화아연 나노막대, 구리 박막으로부터 직접합성법을 이용하여 각각 MIL-53 (Al), ZIF-8, Cu-BDC와 같은 MOF를 마이크로진동자 센서 표면에 균일하게 합성하는 방법에 대해 정리하였다. 또한, 대표적인 마이크로진동자인 수정진동자미세저울과 마이크로캔틸레버의 작동원리와 금속유기골격체에 기체흡착 시 변하는 신호해석에 대한 내용을 다룬다. 이를 통해, 마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석에 대한 이해를 높이고자 한다.