Browse > Article
http://dx.doi.org/10.14478/ace.2021.1104

Gas Sorption Analysis of Metal-organic Frameworks using Microresonators  

Kim, Hamin (School of Nano & Materials Science and Engineering, Kyungpook National University)
Choi, Hyun-Kuk (School of Nano & Materials Science and Engineering, Kyungpook National University)
Kim, Moon-Gab (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Young-Sei (School of Nano & Materials Science and Engineering, Kyungpook National University)
Yim, Changyong (School of Nano & Materials Science and Engineering, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 11-16 More about this Journal
Abstract
Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.
Keywords
Metal-organic frameworks; Microcantilever; Quartz crystal microbalance; Gas sorption analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. He, W. Zhou, G. Qian, and B. Chen, Methane storage in metalorganic frameworks, Chem. Soc. Rev., 43, 5657-5678 (2014).   DOI
2 J. R. Li, J. Sculley, and H.-C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932 (2012).   DOI
3 Y. Li and R. T. Yang, Gas adsorption and storage in metal-organic framework MOF-177, Langmuir, 23, 12937-12944 (2007).   DOI
4 T. G. Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi, MOF-74 building unit has a direct impact on toxic gas adsorption, Chem. Eng. Sci., 66, 163-170 (2011).   DOI
5 S. Kitagawa and R. Matsuda, Chemistry of coordination space of porous coordination polymers, Coord. Chem. Rev., 251, 2490-2509 (2007).   DOI
6 T. Thundat, R. J. Warmack, G. Y. Chen, and D. P. Allison, Thermal and ambient-induced deflections of scanning force microscope cantilevers, Appl. Phys. Lett., 64, 2894-2896 (1994).   DOI
7 C. Yim, M. Lee, W. Kim, S. Lee, G.-H. Kim, K. T. Kim, and S. Jeon, Adsorption and desorption characteristics of alcohol vapors on a nanoporous ZIF-8 film investigated using silicon microcantilevers, Chem. Commun., 51, 6168-6171 (2015).   DOI
8 D. Lee, N. Shin, K.-H. Lee, and S. Jeon, Microcantilevers with nanowells as moisture sensors, Sens. Actuators B Chem., 137, 561-565 (2009).   DOI
9 I. Stassen, N. Campagnol, J. Fransaer, P. Vereecken, D. D. Vos, and R. Ameloot, Solvent -free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors, CrystEngComm, 15, 9308-9311 (2013).   DOI
10 G. Sauerbrey, The Use of Quartz Crystal Oscillators for Weighing Thin Layers and for Microweighing Applications, 1st ed., 1-17 (1991).
11 F. J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., 75, 949-983 (2003).   DOI
12 C. Yim, M. Yun, S. Kim, N. Jung, S.-H. Lim, M. Lee, S.-W. Rhee, T. Thundat, and S. Jeon, Nanomechanical Thermal Analysis of Indium Films Using Silicon Microcantilevers, Jpn. J. Appl. Phys., 51, 08KB07 (2012).   DOI
13 T. T. P. I. O. and R. J. Warmack, Microcantilever sensors, Nanoscale Microscale Thermophys. Eng., 1, 185-199 (1997).   DOI
14 T. Abe and M. Esashi, One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE, Sens. Actuators Phys., 82, 139-143 (2000).   DOI
15 R. Datar, S. Kim, S. Jeon, P. Hesketh, S. Manalis, A. Boisen, and T. Thundat, Cantilever sensors: nanomechanical tools for diagnostics, MRS. Bull., 34, 449-454 (2009).   DOI
16 F. Chen, D. Lai, L. Guo, J. Wang, P. Zhang, K. Wu, Z. Zhang, Q. Yang, Y. Yang, B. Chen, Q. Ren, and Z. Bao, Deep desulfurization with record SO2 adsorption on the metal-organic frameworks, J. Am. Chem. Soc., 143, 9040-9047 (2021).   DOI
17 X.-D. Song, S. Wang, C. Hao, and J.-S. Qiu, Investigation of SO2 gas adsorption in metal-organic frameworks by molecular simulation, Inorg. Chem. Commun., 46, 277-281 (2014).   DOI
18 A. Claudino, J. L. Soares, R. F. P. M. Moreira, and H. J. Jose, Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures, Carbon, 42, 1483-1490 (2004).   DOI
19 C. Yim and S. Jeon, Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption, RSC. Adv., 5, 67454-67458 (2015).   DOI
20 Y. Hwang, H. Sohn, A. Phan, O. M. Yaghi, and R. N. Candler, Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection, Nano Lett., 13, 5271-5276 (2013).   DOI
21 C. Yim, M. Yun, N. Jung, and S. Jeon, Quartz resonator for simultaneously measuring changes in the mass and electrical resistance of a polyaniline film, Anal. Chem., 84, 8179-8183 (2012).   DOI
22 W. Sun, L. Lin, X. Peng, and B. Smit, Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOX from flue gases, AIChE. J., 60, 2314-2323 (2014).   DOI
23 S. L. James, Metal-organic frameworks, Chem. Soc. Rev., 32, 276- 288 (2003).   DOI
24 J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43, 6011-6061 (2014).   DOI
25 E. Martinez-Ahumada, A. Lopez-Olvera, V. Jancik, J. E. Sanchez-Bautista, E. Gonzalez-Zamora, V. Martis, D. R. Williams, and I. A. Ibarra, MOF materials for the capture of highly toxic H2S and SO2, Organometallics, 39, 883-915 (2020).   DOI
26 S. Cavenati, C. A. Grande, and A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095-1101 (2004).   DOI
27 M. K. A. Mesfer, and M. Danish, Breakthrough adsorption study of activated carbons for CO2 separation from flue gas, J. Environ. Chem. Eng., 6, 4514-4524 (2018).   DOI
28 C. Yim, M. Lee, M. Yun, G.-H. Kim, K. T. Kim, and S. Jeon, CO2-selective nanoporous metal-organic framework microcantilevers, Sci. Rep., 5, 10674 (2015).   DOI
29 K. Okada, R. Ricco, Y. Tokudome, M. J. Styles, A. J. Hill, M. Takahashi, and P. Falcaro, Copper conversion into Cu(OH)2 nanotubes for positioning Cu3(BTC)2 MOF crystals: controlling the growth on flat plates, 3D architectures, and as patterns, Adv. Funct. Mater., 24, 1969-1977 (2013).   DOI