1 |
AFPS, 2022. Agricultural Policy Insurance & Finance Service, http://www.apfs.kr, Accessed on Dec. 6, 2022.
|
2 |
Benincasa, P., A. Sara, B. Luca, C. A. Fabbri, N. Antonio, S. Velia, M. Gianluca, G. Marcello, T. Francesco, and V. Marco, 2018. Reliability of NDVI derived by high resolution satellite and UAV compared to in-field methods for the evaluation of early crop N status and grain yield in wheat, Experimental Agriculture, 54: 604-622. http://dx.doi.org/10.1017/S0014479717000278
DOI
|
3 |
Bendig, J., B. Andereas, and B. Georg, 2013. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability, Photogrammetrie Fernerkundung Geoinformation, 6: 551-562. http://dx.doi.org/10.1127/1432-8364/2013/0200
DOI
|
4 |
Bendig, J., K. Yu, H. Aasen, A. Bolten, S. Bennertz, J. Broscheit, M.L. Gnyp, and G. Bareth, 2015, Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley, International Journal of Applied Earth Observation and Geoinformation, 39: 79-87. https://doi.org/10.1016/j.jag.2015.02.012
DOI
|
5 |
Bernhard, E.B., M.G. Isabelee, and N.V. Vladimir, 1992. A training algorithm for optimal margin classifiers, Proc. of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, Jul. 27-29, pp. 144-152. https://doi.org/10.1145/130385.130401
DOI
|
6 |
Jeong, C.H., S.H. Go, and J.H. Park, 2022. Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do -, Journal of the Korean Society of Rural Planning, 28(1): 057-069 (in Korean with English abstract). https://doi.org/10.7851/ksrp.2022.28.1.057
DOI
|
7 |
Kwak, G.H. and N.W. Park, 2022. Comparison of Deep Learning-based Unsupervised Domain Adaptation Models for Crop Classification, Korean Journal of Remote Sensing, 38(2): 199-213 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2022.38.2.6
DOI
|
8 |
Liu, T., R. Li, X. Zhong, M. Jiang, X. Jin, P. Zhou, S. Liu, C. Sun, and W. Guo, 2018. Estimates of rice lodging using indices from UAV visible and thermal infrared images, Agricultural and Forest Meteorology, 252: 144-154. https://doi.org/10.1016/j.agrformet.2018.01.021
DOI
|
9 |
Louhaichi, M., M. Borman, and D. Johnson, 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat, Geocarto International, 16(1): 65-70. https://doi.org/10.1080/10106040108542184
DOI
|
10 |
Berni, J.A.J., P.J. Zarco-Tejada, L. Suarez, and E. Fereres, 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle, IEEE Transactions of Geoscience and Remote Sensing, 48(3): 722-738. https://doi.org/10.1109/TGRS.2008.2010457
DOI
|
11 |
Justice, C.O., J.R.G. Townshend, B.N. Holben, and C. J. Tucker, 1985. Analysis of the phenology of global vegetation using meteorological satellite data, International Journal of Remote Sensing, 6: 1271-1318. https://doi.org/10.1080/01431168508948281
DOI
|
12 |
Kawashima, S. and M. Nakatani, 1998. An algorithm for estimating chlorophyll content in leaves using a video camera, Annals of Botany, 81(1): 49-54. https://doi.org/10.1006/anbo.1997.0544
DOI
|
13 |
Na, S.I., C.W. Park, K.H. So, H.Y. Ahn, and K.D. Lee, 2019. Selection on Optimal Bands to Estimate Yield of the Chinese Cabbage Using Drone based Hyperspectral Image, Korean Journal of Remote Sensing, 35(3): 375-387 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2019.35.3.3
DOI
|
14 |
Karakizi, C., M. Oikonomou, and K. Karantzalos, 2016. Vineyard detection and vine variety discrimination from very high resolution satellite data, Remote Sensing, 8: 1-25. https://doi.org/10.3390/rs8030235
DOI
|
15 |
Mao, W., Y. Wang, and Y. Wang, 2003. Real-time detection of between-row weeds using machine vision, Proc. of 2003 ASAE (American Society of Agricultural Engineers) Annual Meeting, Las Vegas, NV, USA, Jul. 27-30, p. 1. https://doi.org/10.13031/2013.15381
DOI
|
16 |
Ning, L., Z. Jie, H. Zixu, L. Dong, C. Qiang, Y. Xia, T. Yongchao, Z. Yan, C. Weixing, and C. Tao, 2019. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system, Plant Methods, 15: 17. https://doi.org/10.1186/s13007-019-0402-3
DOI
|
17 |
Lu, D. and Q. Weng, 2007. A survey of image classification methods and techniques for improving classification performance, International Journal of Remote Sensing, 28: 823-870. https://doi.org/10.1080/01431160600746456
DOI
|
18 |
Meyer, G. and J. Neto, 2008. Verification of color vegetation indices for automated crop imaging applications, Computers and Electronics in Agriculture, 63(2): 282-293. https://doi.org/10.1016/j.compag.2008.03.009
DOI
|
19 |
Marcelo, C.F.W. and P.M. Jose, 2020. Soybean Yield Estimation and Its Components: A Linear Regression Approach, Agriculture, 10(8): 348. https://doi.org/10.3390/agriculture10080348
DOI
|
20 |
Na, S.I., C.W. Park, K.H. So, H.Y. Ahn, and K.D. Lee, 2018. Development of Biomass Evaluation Model of Winter Crop Using RGB Imagery Based on Unmanned Aerial Vehicle, Korean Journal of Remote Sensing, 34(5): 709-720 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2018.34.5.1
DOI
|
21 |
Neto, J.C., 2004. A combined statistical-soft computing approach for classification and mapping weed species in minimum-tillage systems, Lincoln, NE, USA.
|
22 |
RDA (Rural Development Administration), 2018. Soybean, Rural Development Administration, Jeonju, Republic of Korea.
|
23 |
RDA (Rural Development Administration), 2022. The 2nd Rural Development Project Basic Plan (2018-2022), 2022 Implementation Plan, Rural Development Administration, Jeonju, Republic of Korea.
|
24 |
Seo, H. D. and E. M. Kim, 2019. Object Classification Using Point Cloud and True Ortho-image by Applying Random Forest and Support Vector Machine Techniques, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 37(6): 405-416. https://doi.org/10.7848/ksgpc.2019.37.6.405
DOI
|
25 |
Sofia, V., R. Brian, R. Anca, and V.D.K. Esther, 2011. Confusion Matrix-based Feature Selection, Proc. of The 22nd Midwest Artificial Intelligence and Cognitive Science Conference, Cincinnati, OH, USA, Apr. 16-17, vol. 710, pp. 120-127.
|
26 |
Xiuliang, J., J. Pablo, T. Zarco, S. Urs, P.R. Matthew, J.H. Malcolm, K.V. Rajeev, Y. Tao, N. Chenwei, L. Zhenhai, M. Bo, X. Yonggui, X. Yongdun, and L. Shaokun, 2020. High-Throughput Estimation of Crop Traits, IEEE Geoscience and Remote Sensing Magazine, 9(1): 200-231. https://doi.org/10.1109/MGRS.2020.2998816
DOI
|
27 |
Swain, K.C., S.J. Thomson, and H. Jayasuriya, 2010. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop, Transactions of the ASABE, 53(1): 21-27. https://doi.org/10.13031/2013.29493
DOI
|
28 |
Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8(2): 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
DOI
|
29 |
Woebbecke, D.M., G.E. Meyer, K. V. Bargen, and D.A. Mortensen, 1995. Color indices for weed identification under various soil, residue, and lighting conditions, Transactions of the ASAE, 38(1): 259-269. https://doi.org/10.13031/2013.27838
DOI
|
30 |
Zhangyan, J., R.H. Alfredo, D. Kamel, and M. Tomoaki, 2008. Development of a two-band enhanced vegetation index without a blue band, Remote Sensing of Environment, 112(10): 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006
DOI
|
31 |
Gitelson, A.A., Y. Kaufman, R. Stark, and D. Rundquist, 2002, Novel algorithms for remote estimation of vegetation fraction, Remote Sensing of Environment, 80(1): 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9
DOI
|