• 제목/요약/키워드: sensitivity analysis

검색결과 7,022건 처리시간 0.049초

RCF 기법을 이용한 SVC의 주기적 스위칭 동작에 의한 전력계통 진동모드 감도해석 (Sensitivity Analysis of Power System Oscillation Modes Induced by Periodic Switching Operations of SVC by the RCF Method)

  • 김덕영
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.363-368
    • /
    • 2008
  • In this paper, the Resistive Companion Form(RCF) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is proved very effective to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of SVC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and proved that the RCF analysis method is very effective to analyze the discrete power systems including periodically operated switching equipments such as SVC.

준해석적 비선형 설계민감도를 위한 보정변위하중법 (Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

민감도 분석을 이용한 반도체 검사 장비의 X, Y 스테이지 구조의 경량화 연구 (A Study on the Weight Reduction of X,Y stage of Semiconductor Inspection Equipment using Sensitivity Analysis)

  • 고만수;권순기;김참내
    • 디지털융복합연구
    • /
    • 제17권7호
    • /
    • pp.125-130
    • /
    • 2019
  • 민감도 해석은 어떤 설계 변수의 변화가 전체 시스템에 미치는 영향을 확인하기 위한 방법으로, 계산된 민감도는 구조개선 시 중요한 지표가 된다. 본 연구에서는 유한요소해석을 이용하여 설계 변수에 대한 민감도 도출 및 분석 방법과, 민감도 결과를 활용한 구조개선 방법을 제안하였다. 구조 개선이 필요한 실제 반도체 검사 장비를 이용하여 경량화를 위한 설계 변수를 선정하고 설계 변수에 대한 민감도를 유한요소법과 유한차분법을 활용하여 계산하였으며, 장비가 요구하는 과도응답(Transient Response)은 유지하면서도 무게 감소가 가능한 개선 방안을 제시하였다. 유한요소해석과 유한차분법을 이용한 민감도 분석 결과를 이용한다면 구조물의 설계 개선 시 원하는 응력 또는 변위는 만족하면서도 구조적으로 향상된 설계를 할 수 있고, 이는 반도체 검사 장비뿐만 아니라 다양한 분야에서 활용이 가능하다.

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

기호계산 기법을 이용한 현가장치의 기구학적 민감도 해석 (Kinematic Design Sensitivity Analysis of Suspension System Using a Symbolic Computation Method)

  • 송성재;탁태오
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.247-259
    • /
    • 1996
  • Kinematic design sensitivity analysis for vehicle in suspension systems design is performed. Suspension systems are modeled using composite joins to reduce the number of the constraint equations. This allows a semi-analytical approach that is computerized symbolic manipulation before numerical computations and that may compensate for their drawbacks. All the constraint equations including design variables are derived in symbolic equations for sensitivity analysis. By directly differentiating the equations with respect to design variables, sensitivity equations are obtained. Since the proposed method only requires the hard point data, sensitivity analysis is possible in suspension design stage.

  • PDF

판 구조물의 감도해석 및 신뢰성해석 (Sensitivity and Reliability Analysis of Elate)

  • 김지호;양영순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.57-62
    • /
    • 1991
  • For the purpose of developing the method for efficiently calculating the design sensitivity and the reliability for the complicated structure such as ship structure, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis needed in the reliability-based design is performed. The reliability analysis is carried out for the initial yielding failure, in which the derivative derived in the deterministic desin sensitivity is used. The present PFEM-based reliability method shows good agreement with Monte Carlo method in terms with the variance of response and the associated probability of failure even at the first or first few iteration steps. The probabilistic design sensitivity analysis evaluates explicitly the contribution of each random variable to probability of failure. Further, the reliability index variation can be easily predicted by the variation of the mean and the variance of the random variables.

  • PDF

직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (I) -설계민감도 해석 - (Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (I) -Design Sensitivity Analysis-)

  • 김세호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2245-2252
    • /
    • 2002
  • Design sensitivity analysis scheme is proposed in an elasto -plastic finite element method with explicit time integration using a direct differentiation method. The direct differentiation is concerned with large deformation, the elasto-plastic constitutive relation, shell elements with reduced integration and the contact scheme. The design sensitivities with respect to the process parameter are calculated with the direct analytical differentiation of the governing equation. The sensitivity results obtained from the present theory are compared with that obtained by the finite difference method in a class of sheet metal forming problems such as hemi-spherical stretching and cylindrical cup deep-drawing. The result shows good agreement with the finite difference method and demonstrates that the preposed sensitivity calculation scheme is a pplicable in the complicated sheet metal forming analysis and design.

전력계통의 확대상태행렬 고유치감도 해석 (Eigen-sensitivity Analysis of Augmented System State Matrix)

  • 심관식;남해곤;김용구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.749-753
    • /
    • 1996
  • This paper presents a new method for first and second order eigen-sensitivity analysis of system matrix in augmented form. Eigen-sensitivity analysis provides invaluable informations in power system planning and operation. However, conventional eigen-sensitivity analysis methods, which need all the eigenvalues and eigenvectors, can not be applicable to large scale power systems due to large computer memory and computing time required. In the proposed method, all sensitivity computations for a mode are carried out using the augmented system matrix and its own eigenvalue and right & left eigenvectors. In other words sensitivity analysis for a mode does not need informations on the other eigenvalues and eigenvectors and sparsity technique can be fully utilized. Thus compuations can be done very efficiently with moderate computer memory and computing time even for large power systems. The proposed algorithm is tested for one machine infinite bus system.

  • PDF

설계 만감도 해석을 활용한 선형 시스템 진동내구 평가 (Estimation of the vibration fatigue of a linear elastic system based on a desiign sensitivity analysis)

  • 김찬중;김규식;강호영;진여화;이봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.491-496
    • /
    • 2010
  • The direct design modification of problematic component is disallowed in order to sacrifice other major factors such as a stability or a major performance. So, the best design policy is to risvise the immature structural medchanism under the minimal design change as soon as possible. For this paper presents a new design sensitivity analysis based on transmissibility rtio (TR) of response acceleration to find a proper candidate for the minimal design modification. The new sensitivity analysis is based on the fact that the sensitivity of TR over a small design change is inversly proportinal to the magnitude of TR. The theory of proposed design sensitivity analysis is simulated with the variance of TR over a dynamic change. Then, new methodology is appplied for a linear elastic specimen to detect the most sensitive node over a design change using measured accleration data during uni-axial vibration test, The physical verification of the sensitivity method is conducted on the CAE model of a linear elastic specimen by adding concentration mass and the vibration fatigue of the simple specimen is analyzed to estimate the relationship between fatigue behaviors and sensitivity consequences.

  • PDF