• 제목/요약/키워드: sensitive to apoptosis gene

검색결과 20건 처리시간 0.026초

PC-3 세포에서 cobalt chloride에 의해 down-regulation되는 puromycin-sensitive aminopeptidase의 apoptosis에 미치는 효과 (Cobalt Chloride-Induced Down-Regulation of Puromycin-Sensitive Aminopeptidase Involved in Apoptosis of PC-3 Cells)

  • 이숙희;김환규
    • 생명과학회지
    • /
    • 제20권7호
    • /
    • pp.991-998
    • /
    • 2010
  • 저산소상태(hypoxia)는 세포유형 및 성장조건에 따라 apoptosis를 유발하거나 또는 apoptosis의 진행을 억제한다. 저산소상태 유발물질인 cobalt chloride ($CoCl_2$) 역시 여러 세포 유형에서 apoptosis를 유발한다고 알려져 있으나 그 기작은 불명확하다. 본 연구에서는 PC-3 세포에서 $CoCl_2$에 의해 down-regulation되는 puromycin-sensitive aminopeptidase (PSA)의 세포 내 기능을 조사하였다. 본 연구 결과, PC-3 세포에 puromycin을 처리한 결과 전체 세포 집단의 약 42%에서 apoptosis가 유도되었다. PSA가 apoptosis에 관여하는지를 확인하고자 PSA siRNA로 내재성 PSA의 발현을 억제시킨 다음 apoptosis 연관 특성을 조사한 결과 PSA의 발현 억제에 의해 효과적으로 apoptosis가 유도되었다. 이러한 결과는 PC-3 세포에서 PSA가 세포생존에 중요한 역할을 할 것임을 보여주는 것이라 사료된다.

Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans

  • Roh, Ji-Yeon;Park, Sun-Young;Choi, Jin-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.54-59
    • /
    • 2006
  • The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.

중피종에서 PTEN(Phosphatase and Tensin)의 역할에 대한 실험적 연구 (A Experimental Study of PTEN (Phosphatase and Tensin) Role in Mesothelioma)

  • 이석기;김권천
    • Journal of Chest Surgery
    • /
    • 제36권11호
    • /
    • pp.852-857
    • /
    • 2003
  • 배경: 중피종은 일반적 치료에 대하여 큰 효과가 없다고 알려져 있다. 저자들은 Adenoviral p53에 민감하게 반응하는 중피종 세포주인 염증 및 표피세포 아유형(subtype)에 adenovirus유전자 핵산전달감염(transfection)으로 중피종 치료의 새로운 방법에 대하여 평가하고자 하였다. 대상 및 방법: 두 쌍의 adenoviral PTEN와 LacZ (Ad/GT-LacZ와 Ad/GV16) 매개체(vectors)에 REN (p53 sensitive)인 중피종 세포주(methothelioma cell lines)의 형질을 도입(transduction)하였으며, 단백질 함량은 Western blotting 분석을 이용하여 측정하였다. 세포사멸은 fluorescence-activated cell sorter analysis of subdiploid populations에 의하여 평가하였으며, 세포 생존력은 XTT 분석에 의하여 결정하였다. 통계 분석은 analysis of variance와 Student t test를 이용하여 하였다. 결과: Adenoviral PTEN 유전자로 처치된 세포사는 72시간 후에 MOI of 20에서 대조군 2.5%에 비하여 REN군 32.9%로 상대적으로 높게 나타났다. 또한 REN cell에서의 전구세포사멸 단백질(proapoptotic protein)인 BAX 발현 증가를, BCL-2에서 발현 감소를 나타내었으나, BCL-XL, BAK 및 BAD 단백질은 변화가 없었다. 결론: Adenovirus PTEN을 매개로 한 BAX 발현 증가는 세포사멸을 유도하고 p53에 민감한 중피종 세포들(p53-sensitive methothelioma cells)에서 세포 생존력을 감소시킨다. 이러한 결과는 PTEN 유전자 핵산전달감염하는 것은 중피종 치료의 새로운 대안적 방법이 될 수 있다는 것을 암시한다.

U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발 (Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene)

  • 김종수;김인규;강경선;윤병수
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권1호
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF

혈구세포 수송체로 투여된 트레일 유전자의 혈중 발현 지속 효과 (Prolonged Gene Expression Following Erythrocyte-Mediated Delivery of TRAIL Plasmid DNA)

  • 변향민;권경애;신지영;오유경
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권4호
    • /
    • pp.261-265
    • /
    • 2003
  • Tumor necrosis facto-related apoptosis-inducing ligand (TRAIL) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in a number of tumor cells whereas cells from most of normal tissues are highly resistant to TRAIL-induced apoptosis. These observations have raised considerable interest in the use of TRAIL in tumor therapy. In this study we report the biodistribution fates and serum expression pattern of plasmid DNA encoding TRAIL (pTRAIL) delivered in erythrocyte ghosts (EG). pTRAIL was loaded into EG by electroportion in a hypotonic medium The mRNA expression of pTRAIL was prolonged following delivery in EG-encapsulated forms. EG containing pTRAIL showed significant levels of mRNA expression in the blood over 9 days. The organ expression patterns of pTRAIL delivered via EG, however, did not significantly differ from those of naked pTRAIL, indicating that the expression-enhancing effect of EG containing pTRAIL was localized to the blood. These results suggest that pTRAIL-loaded EG might be of potential use in the treatment of hematological diseases such as TRAIL-sensitive leukemia.

토양선충 Caenorhabditis elegans를 이용한 Nonylphenol의 독성 영향 연구 (Toxicological Study on Nonylphenol using the Soil Nematode, Caenorhabditis elegans)

  • 노지연;최진희
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권4호
    • /
    • pp.323-330
    • /
    • 2006
  • The aim of current study was to evaluate the toxicity of nonylphenol(NP) on soil nematode, Caenorhabditi elegans. The stress-related gene expression, growth, reproduction and development have been employed to monitor soil toxicity. The 24-h median effect concentrations $(LC_{50s})$ of NP was $0.15mg/L$. The expressions of vitellogenin-6, vitellogenin-2, cytochrome P450 family protein 35a2 and apoptosis enhancer-1 genes were upregulated in C. elegans by NP exposure. Alterations in growth, reproduction and development were also observed in NP-exposed group and especially hatching failure was observed. The overall results indicate that C. elegans has considerable potential as sensitive markers for NP toxicity monitoring.

Hepatitis C Virus Core Protein Sensitizes Cells to Apoptosis Induced by Anti-Cancer Drug

  • Kang, Mun-Il;Mong Cho;Kim, Sun-Hee;Kang, Chi-Dug;Kim, Dog-Wan
    • Journal of Microbiology
    • /
    • 제37권2호
    • /
    • pp.90-96
    • /
    • 1999
  • The core protein of the hepatitis C virus (HCV) is a multifunctional protein. The HCV core protein was reported to regulate cellular gene expression and transform primary rat embryo fibroblast cells. However, the role of the core protein in the pathogenesis of HCV-associated liver diseases is not well understood. To investigate the functional role of the core protein in cytophathogenicity, we have constructed stable expression systems of full length or truncated HCV core protein lacking the C-terminal hyderophobic domains and established HepG2 cell clones constitutively expressing the core protein. The full length core protein was localized in the cytoplasm and the C-terminal truncated core protein was localized in the nucleus. HepG2 cells expressing nuclear, truncated core protein showed elevated cell death during cultivation compared to untransfected cells and full length core-expressing cells. In the treatment with bleomycin, both cell clones expressing full length or truncated core protein appeared to be more sensitive to blemoycin than the parental HepG2 cells. These results suggest that the core protein may play a role in HCV pathogenesis promoting apoptotic cell death of infected cells.

  • PDF

Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson's Disease Model

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Ahn, Eun Hee;Jo, Hyo Sang;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.226-233
    • /
    • 2014
  • Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium ($MPP^+$) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by $MPP^+$ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.

Medicarpin induces lipolysis via activation of Protein Kinase A in brown adipocytes

  • Imran, Khan Mohammad;Yoon, Dahyeon;Lee, Tae-Jin;Kim, Yong-Sik
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.249-254
    • /
    • 2018
  • Natural pterocarpan Medicarpin (Med) has been shown to have various beneficial biological roles, including inhibition of osteoclastogenesis, stimulation of bone regeneration and induction of apoptosis. However, the effect of the Med on lipolysis in adipocytes has not been reported. Here, we show the effect of Med on lipolysis in different mouse adipocytes and elucidate the underlying mechanism. We observed that Med treatment promoted release of glycerol in the media. Differentiated mouse brown adipose tissue cells were treated with Med. RNA-Seq analysis was performed to elucidate the effect of med and subsequently was confirmed by qRT-PCR and western blotting analyses. Med treatment increased both protein and gene expression levels of hormone-sensitive lipase (Hsl) and adipose triglyceride lipase (Atgl), which are two critical enzymes necessary for lipolysis. Mechanistic study showed that Med activates Protein Kinase A (PKA) and phosphorylates Hsl at PKA target position at $Serine^{660}$. Silencing of PKA gene by short interfering RNA attenuated the Med-induced increase in glycerol release and Hsl phosphorylation. The results unveil that Med boosts lipolysis via a PKA-dependent pathway in adipocytes and may provide a possible avenue of further research of Med mediated reduction of body fat.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • 제27권
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.