• Title/Summary/Keyword: sensing time

Search Result 2,598, Processing Time 0.03 seconds

A Geographic Information System(GIS) Approach for Modeling a Soil Erosion Map from Available Data

  • Yang, Young-Kyu;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.1
    • /
    • pp.23-33
    • /
    • 1986
  • The Universal Soil Loss Equation (USLE) has been applied to the microcomputer based Geographic Information System (GIS) data planes to model a soil erosion map for a county. The conventional method applied by US Soil conservation Service (SCS) has been tedious and time consuming process on a mainframe computer which yields a multisectioned, hard to interprete, line printer map of the each county's soil loss. The new approach proved to be an economical and efficient tool for the natural resource managers in their decision malting in land conservation practice. They can simulate the variety of conservation practices and assess the cost and benefit without physically implementing the conservation measures.7he new approach also can produce all the other graphical and statistical reports.

Vertically Aligned WO3-CuO Core-Shell Nanorod Arrays for Ultrasensitive NH3 Detection

  • Yan, Wenjun;Hu, Ming
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850122.1-1850122.6
    • /
    • 2018
  • Vertically aligned $WO_3$-CuO core-shell nanorod arrays for $NH_3$ sensing are prepared. The sensor is fabricated by preparing $WO_3$-CuO nanorod arrays directly on silicon wafer with interdigital Pt electrodes. The $WO_3$-CuO nanorod arrays are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sensor based on the vertically aligned $WO_3$-CuO nanorod arrays exhibits ultrasensitive $NH_3$ detection, indicating p-type behavior. The optimum sensing temperature is found to be about $150^{\circ}C$. Both response and recovery time to $NH_3$ ranging from 50 ppm to 500 ppm are around 10-15 s. A possible $NH_3$ sensing mechanism of the vertically aligned hybrid nanorod arrays is proposed.

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Real Time Sensing of a Chatter Badness for a Grinding Machine Line of Automobile Bearings using MBB(Machine Black Box) (머신 블랙박스를 이용한 자동차용 허브 베어링의 연삭가공라인 채터 불량 실시간 감지)

  • Ryu, Bong-Jo;Kim, In-Woong;Choi, Hyun;Kim, IL-Jung;Koo, Kyeung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1517-1518
    • /
    • 2015
  • The paper deals with the real time sensing of a chatter vibration in grinding machine line of automobile bearings using machine black box. The chatter vibration plays bad role in machining quality such as high roughness as well as tool life and machine failure. In this paper, the vibration signals of the automobile hub bearing in the grinding process are shown in the time domain and frequency domain. Through the vibrational signals, chatter vibration badness is detected using machine black box. Therefore, machine black box can be applied to the real time detection of the grinding process in engineering fields.

  • PDF

GMI Magnetic Field Sensor Based on a Time-coded Principle

  • Cao, Xuan-Huu;Son, De-Rac
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.221-224
    • /
    • 2010
  • A laboratory sensor model was designed, constructed, and tested based on a newly proposed working principle of magnetic field detection. The principle of sensing employed a time-coded method in correlation with exploiting the advantageous features of the GMI effect. The sensor demonstrated a sensitivity of $10\;{\mu}s/{\mu}T$ in the field range of ${\pm}100\;{\mu}T$. The sensing element in the form of an amorphous thin wire, $100\;{\mu}m$ in diameter ${\times}50\;mm$ long, was fit into a small field modulation coil of 60 mm length. At a magnetic field modulation in the range of hundreds of Hz, the change in time interval of two adjacent GMI voltage peaks was linearly related to the external magnetic field to be measured. This mechanism improved the sensor linearity of the GMI sensor to better than 0.2% in the measuring range of ${\pm}100\;{\mu}T$.

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

A REAL-TIME REMOTE SENSING AND DATA ACQUISITION SYSTEM FOR A NUCLEAR POWER PLANT

  • Kim, Ki-Ho;Hieu, Bui Van;Beak, Seung-Hyun;Choi, Seung-Hwan;Son, Tae-Ha;Kim, Jung-Kuk;Han, Seung-Chul;Jeong, Tai-Kyeong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • A Structure Health Monitoring (SHM) system needs a real-time remote data acquisition system to monitor the status of a structure from anywhere via Internet access. In this paper, we present a data acquisition system that monitors up to 40 Fiber Bragg Grating Sensors remotely in real-time. Using a TCP/IP protocol, users can access information gathered by the sensors from anywhere. An experiment in laboratory conditions has been done to prove the feasibility of our proposed system, which is built in special-purpose monitoring system.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

An Approach to Improve the End-to-end Performance for Mobile Ad hoc Networks (이동 애드 혹 망을 위한 종단간의 성능 개선 방안)

  • 이용석;최웅철
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, we make MAC protocol improvements for performance enhancement of multi-hop ad-hoc wireless networks. A node in ad-hoc wireless networks can transmit a packet only when the medium is available, and while a packet is being transmitted, no other nodes are allowed to transmit a packet if they are in carrier sensing range. Carrier sensing range can be divided into two disjoint areas of transmission range and carrier sensing zone(9), and we address the importance of the protocol behavior when a node is in carrier sensing zone. The characteristic of the carrier sensing zone is that a node can not know when the remaining time of the on-going transmission session expires or exactly when the media becomes available. Current MAC protocol does not behave in much different way between when a node is in transmission range and in carrier sensing zone. We have conducted a comprehensive simulation to study the performance improvements. The simulation results indicate that the performance is increased and the number of dropped packets due to collision is significantly reduced as much as a half.

Analysis of Effects of Nonideal Channels on the Throughput of CR Systems (인지 무선 시스템에서 전송 오류가 전송 용량에 미치는 영향에 대한 분석)

  • Lee, Sang-Wook;Lim, Chang-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.719-726
    • /
    • 2009
  • CR systems performs spectrum sensing operation to detect the appearance of primary users. However, since it is not feasible to do spectrum sensing and data transmission simultaneously, they typically operate alternatively in a time domain. There have been an effort(8) to investigate the optimal spectrum sensing duration for maximum throughput for the scheme with cooperative spectrum sensing. This is based on an assumption that the communication channels between each secondary user and the fusion center are ideal and does not consider the effects of transmission error. Motivated by this, we here model the channels as binary symmetric channels and examined its effect on the maximum throughput and the associated optimal sensing duration. Analysis shows that the performance degradation due to the transmission error is smaller for the case of using the AND fusion rule than for the OR fusion rule.