DOI QR코드

DOI QR Code

GMI Magnetic Field Sensor Based on a Time-coded Principle

  • Received : 2010.07.30
  • Accepted : 2010.09.07
  • Published : 2010.12.31

Abstract

A laboratory sensor model was designed, constructed, and tested based on a newly proposed working principle of magnetic field detection. The principle of sensing employed a time-coded method in correlation with exploiting the advantageous features of the GMI effect. The sensor demonstrated a sensitivity of $10\;{\mu}s/{\mu}T$ in the field range of ${\pm}100\;{\mu}T$. The sensing element in the form of an amorphous thin wire, $100\;{\mu}m$ in diameter ${\times}50\;mm$ long, was fit into a small field modulation coil of 60 mm length. At a magnetic field modulation in the range of hundreds of Hz, the change in time interval of two adjacent GMI voltage peaks was linearly related to the external magnetic field to be measured. This mechanism improved the sensor linearity of the GMI sensor to better than 0.2% in the measuring range of ${\pm}100\;{\mu}T$.

Keywords

References

  1. K. Mohri, Mater. Sci. Eng. A185, 141 (1994).
  2. L. V. Panina, K. Mohri, K. Bushida, and M. Noda, J. Appl. Phys. 76, 6198 (1994). https://doi.org/10.1063/1.358310
  3. K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, Sensor and Actuators A 59, 1 (1997). https://doi.org/10.1016/S0924-4247(97)80141-0
  4. K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, Sensor and Actuators A 91, 85 (2001). https://doi.org/10.1016/S0924-4247(01)00620-3
  5. G. V. Kurlyandskays, A. Garcia-Arribas, and J. M. Barandiaran, Sensor and Actuators A 106, 234 (2003). https://doi.org/10.1016/S0924-4247(03)00174-2
  6. H. Chiriac, M. Tibu, A.-E. Moga, and D. D. Herea, J. Magn. Magn. Mater. 293, 671 (2005). https://doi.org/10.1016/j.jmmm.2005.02.043
  7. Y. Honkura, J. Magn. Magn. Mater. 249, 375 (2002). https://doi.org/10.1016/S0304-8853(02)00561-9
  8. S. Yabukami, H. Mawatari, N. Horikoshi, Y. Murayama, T. Ozawa, and K. Ishiyama, J. Magn. Magn. Mater. 290, 1318 (2005). https://doi.org/10.1016/j.jmmm.2004.11.427
  9. J. Yanwei, F. Jiancheng, and H. Xuegong, S. Yujun, IEEE Trans. Magn. 34, 1 (2008).
  10. J. P. Sinnecker, P. Tiberto, G. V. Kurlyandskaia, E. H. C. P. Sinnecker, M. Va'zquez, and A. Hernando, J. Appl. Phys. 84, 5814 (1998). https://doi.org/10.1063/1.368848
  11. K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panin, J. Magn. Magn. Mater. 249, 351 (2002). https://doi.org/10.1016/S0304-8853(02)00558-9
  12. C. Chiriac, and H. Chiriac, Sensors and Actuators A 106, 172 (2003). https://doi.org/10.1016/S0924-4247(03)00159-6
  13. W. Heinecke, IEEE Trans. Instrum. Meas. 27, 402 (1978). https://doi.org/10.1109/TIM.1978.4314723
  14. X. H. Cao and D. Son, J. Magnetics 14, 129 (2009). https://doi.org/10.4283/JMAG.2009.14.3.129
  15. J. G. Gore, G. J. Tomka, J. Milne, M. G. Maylin, P. T. Squire, and D. Atkinson, Mater. Res. Soc. Symp. Proc. 577, 499 (1999). https://doi.org/10.1557/PROC-577-499
  16. P. Ripka, A. Platil, P. Kaspar, A. Tipek, M. Malatek, and L. Kraus, J. Magn. Magn. Mater. 254, 633 (2003). https://doi.org/10.1016/S0304-8853(02)00925-3
  17. Carl H. Smith, Michael J. Caruso, and Robert W. Schneider, Tamara Bratland, http://www.sensorsmag.com/sensors/electric-magnetic/a-new-perspective-magnetic-field-sensing-855 (1998).