• 제목/요약/키워드: sense tagged corpus

검색결과 21건 처리시간 0.028초

한국어 단어 공간 모델을 이용한 단어 의미 중의성 해소 (Word Sense Disambiguation using Korean Word Space Model)

  • 박용민;이재성
    • 한국콘텐츠학회논문지
    • /
    • 제12권6호
    • /
    • pp.41-47
    • /
    • 2012
  • 한국어 단어의 의미 중의성 해소 방법들은 주로 소규모의 의미 태그 부착 말뭉치나 사전 정보 등을 이용하여 엔트로피 정보, 조건부 확률, 상호정보 등을 각각 계산하고 이를 중의성 해소에 이용하는 방법 등으로 다양하게 제안되었다. 본 논문에서는 대규모로 구축된 의미 태그 부착 말뭉치를 이용하여 한국어 단어 벡터를 추출하고 이 벡터들 사이의 유사도를 계산하여 단어 의미 중의성을 해소하는 단어 공간 모델 방법을 제안한다. 세종 형태의미분석 말뭉치를 사용하여 학습하고 임의의 200문장(583 단어 종류)에 대해 평가한 결과, 정확도가 94%로 기존의 방법에 비해 매우 우수했다.

사전과 말뭉치를 이용한 한국어 단어 중의성 해소 (Korean Word Sense Disambiguation using Dictionary and Corpus)

  • 정한조;박병화
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2015
  • 빅데이터 및 오피니언 마이닝 분야가 대두됨에 따라 정보 검색/추출, 특히 비정형 데이터에서의 정보 검색/추출 기술의 중요성이 나날이 부각되어지고 있다. 또한 정보 검색 분야에서는 이용자의 의도에 맞는 결과를 제공할 수 있는 검색엔진의 성능향상을 위한 다양한 연구들이 진행되고 있다. 이러한 정보 검색/추출 분야에서 자연어처리 기술은 비정형 데이터 분석/처리 분야에서 중요한 기술이고, 자연어처리에 있어서 하나의 단어가 여러개의 모호한 의미를 가질 수 있는 단어 중의성 문제는 자연어처리의 성능을 향상시키기 위해 우선적으로 해결해야하는 문제점들의 하나이다. 본 연구는 단어 중의성 해소 방법에 사용될 수 있는 말뭉치를 많은 시간과 노력이 요구되는 수동적인 방법이 아닌, 사전들의 예제를 활용하여 자동적으로 생성할 수 있는 방법을 소개한다. 즉, 기존의 수동적인 방법으로 의미 태깅된 세종말뭉치에 표준국어대사전의 예제를 자동적으로 태깅하여 결합한 말뭉치를 사용한 단어 중의성 해소 방법을 소개한다. 표준국어대사전에서 단어 중의성 해소의 주요 대상인 전체 명사 (265,655개) 중에 중의성 해소의 대상이 되는 중의어 (29,868개)의 각 센스 (93,522개)와 연관된 속담, 용례 문장 (56,914개)들을 결합 말뭉치에 추가하였다. 품사 및 센스가 같이 태깅된 세종말뭉치의 약 79만개의 문장과 표준국어대사전의 약 5.7만개의 문장을 각각 또는 병합하여 교차검증을 사용하여 실험을 진행하였다. 실험 결과는 결합 말뭉치를 사용하였을 때 정확도와 재현율에 있어서 향상된 결과가 발견되었다. 본 연구의 결과는 인터넷 검색엔진 등의 검색결과의 성능향상과 오피니언 마이닝, 텍스트 마이닝과 관련한 자연어 분석/처리에 있어서 문장의 내용을 보다 명확히 파악하는데 도움을 줄 수 있을 것으로 기대되어진다.

말뭉치와 개념정보를 이용한 명사 중의성 해소 방법 (Noun Sense Disambiguation Based-on Corpus and Conceptual Information)

  • 이휘봉;허남원;문경희;이종혁
    • 인지과학
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 1999
  • 본 노문에서는 말뭉치와 개념정보에 기반한 명사 중의성 해소 방법을 제안하다. 지곤의 연구에서는 대부분 어휘의 공기 정보을 이용하고있으나, 이러한 방법은 많은 저장공간이 필요하고, 적용률이 크지 않다는 단점이 있다. 본 논무에서는 자동으로 의미 태깅된 한국어 말뭉치에서 추출된 공기 개념정보를 이용하여 명사 중의성을 해소하는 방법을 제안한다. 제안한 방법의 평가 실험에서 기본의미를 정하는 것보다 1.6% 높은 평균 82.4%의 정확률을 보였다. 실험 문장들이 학습문장과 다른 것을 고려하면, 제안된 방법이 어휘 중의성 해소에 유용함을 보여주는 결과라고 할 수 있다.

  • PDF

가변 크기 문맥과 거리가중치를 이용한 동형이의어 중의성 해소 (Word sense disambiguation using dynamic sized context and distance weighting)

  • 이현아
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.444-450
    • /
    • 2014
  • 의미 중의성 해소를 위한 대부분의 기존 연구에서는 문장의 특성에 상관없이 고정적인 크기의 문맥을 사용해 왔다. 본 논문에서는 중의성 해소에서 문장에 따라 가변적인 크기의 문맥을 사용하는 가변길이 윈도우와 단어간 거리를 사용한 의미분석 방법을 제안한다. 세종코퍼스의 형태의미분석 말뭉치로 학습하여 12단어 32,735문장에 대해 실험한 결과에서 제안된 방법이 용언에 대하여 92.2%의 평균 정확도를 보여 고정 크기의 문맥을 사용한 경우에 비해 향상된 결과를 보였다.

가중치를 이용한 통계 기반 한국어 동형이의어 분별 모델 (A Korean Homonym Disambiguation Model Based on Statistics Using Weights)

  • 김준수;최호섭;옥철영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1112-1123
    • /
    • 2003
  • 본 논문은 한국어 정보처리에서 발생하는 어휘 중의성 문제 중 한국어에서 그 심각성이 큰 동형이의어 중의성을 해결하기 위하여, 사전 뜻풀이 말뭉치에서 구축한 의미정보(Semantic Information)와 이를 이용한 기존의 통계기반 동형이의어 분별 모델에 대한 실험 결과를 분석하여, 정확률 향상을 위한 새로운 동형이의어 NPH(New Prior Probability of Homonym sense) 가중치 및 인접 어절에 대한 거리 가중치 적용 모델을 제안한다. 사전 뜻풀이 말뭉치의 상위 고빈도 동형이의어 200개 중 중의성이 높은 46개(명사 30개, 동사 16개)를 선별하고, 21세기 세종 계획에서 제공하는 350만 어절 품사 부착 말뭉치에서 이들 동형이의어를 포함하는 47,977개의 문장을 추출하여 실험을 하였다. 기존의 통계기반 동형이의어 분별 모델에서는 72.08%(명사78.12%, 동사 62.45%)의 정확률을 나타냈으나, NPH 가중치를 부여한 실험 결과 정확률이 평균 1.70% 향상되었으며, NPH와 거리 가중치를 함께 이용한 결과 평균 2.01% 정확률이 향상되었다.

어휘의 중의성 해소를 위한 의미 태깅 (The Lexical Sence Tagging for Word Sense Disambiguation)

  • 추교남;우요섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.201-203
    • /
    • 1998
  • 한국어의 의미 분석을 위해서 의미소가 부여된 말뭉치(Sense-Tagged Corpus)의 구축은 필수적이다. 의미 태깅은 어휘의 다의적 특성으로 인해, 형태소나 구문 태깅에서와 같은 규칙 기반의 처리가 어려웠다. 기존의 연구에서 어휘의 의미는 형태소와 구문적 제약 등의 표층상에서 파악되어 왔으며, 이는 의미 데이터 기반으로 이루어진 것이 아니었기에, 실용적인 결과를 얻기가 힘들었다. 본 연구는 한국어의 구문과 의미적 특성을 고려하고, 용언과 모어 성분간의 의존 관계 및 의미 정보를 나타내는 하위범주화사전과 어휘의 계층적 의미 관계를 나타낸 의미사전(시소러스)을 이용하여, 반자동적인 방법으로 의미소가 부여된 말뭉치의 구축을 위한 기준과 알고리즘을 논하고자 한다.

  • PDF

다중 자질 결정 목록을 이용한 단어 의미 중의성 해결 (World Sense Disambiguation using Multiple Feature Decision Lists)

  • 서희철;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.659-671
    • /
    • 2003
  • 본 논문에서는 결정 목록을 이용해서 단어 의미 중의성을 해결하는 방법을 제안한다. 결정 목록은 하나 이상의 규칙으로 구성되며, 각 규칙에는 신뢰도가 부여되어 있고, 규칙은 불린 함수(=조건, precondition 와 부류(=의미, class)로 구성되어 있다. 분류 대상이 만족하는 불린 함수를 가진 규칙들 중에서 가장 신뢰도가 높은 규칙에 의해서 분류 대상의 부류가 정해진다. 기존 방법에서는 하나의 자질로 하나의 불린 함수를 구성하는 단일 자질 결정 목록을 이용해서 단어 의미 중의성을 해결했다. 이 경우, 자료 부족 문제와 전처리 과정의 오류에 민감하게 반응한다는 문제점이 있다. 본 논문에서는 기존의 단일자질 결정 목록의 문제점을 해결하기 위해서, 하나 이상의 자질로 불린 함수를 구성하는 다중 자질 결정 목록을 제안하고, 다중 자질 결정 목록을 이용하여, 단어 의미 중의성을 해결하는 방법을 기술하고 있다. 단일 자질 결정 목록과 다중 자질 결정 목록을 비교하기 위해서, 1개의 한국어 의미 부착 말뭉치와 5개의 영어 의미 부착 말뭉치를 대상으로 단어 의미 중의성 해결 실험을 했다. 실험 결과 6개의 말뭉치 모두에 서 다중 자질 결정 목록이 단일 자질 결정 목록에 비해서 더 좋은 결과를 나타냈다.

신문 기사의 언어 사용 양상: 코퍼스언어학적 접근 (Aspects of Language Use in Newspaper Articles: A Corpus Linguistic Perspective)

  • 송경화;강범모
    • 인지과학
    • /
    • 제17권4호
    • /
    • pp.255-269
    • /
    • 2006
  • 본 연구는 신문 기사에 대한 실증적 언어 분석을 목적으로 한다. <21세기 세종계획>에 의해 구축된 대용량의 신문 기사 말뭉치를 형태, 어절, 절, 문장 등의 단위로 계량화하여 분석하였다. 신문 기사를 표제, 전문, 본문의 세 구성 성분으로 나누고 표제의 표시성과 압축성의 실현 양상, 전문과 표제의 연관성, 본문의 문장 구조와 일반명사 구성 비율 등을 살펴보았다. 이 연구를 통하여 기존의 비계량적 연구 방법들과 차별화 된 실증적 연구로서 신문 이론을 검증하고, 신문 기사의 새로운 언어 현상을 발견할 수 있었다. 신문 기사와 같은 텍스트는 인간의 인지적 언어 처리의 결과이며 동시에 인지적 언어 형성에 영향을 미칠 것이다.

  • PDF

Word Sense Disambiguation Using Embedded Word Space

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Journal of Computing Science and Engineering
    • /
    • 제11권1호
    • /
    • pp.32-38
    • /
    • 2017
  • Determining the correct word sense among ambiguous senses is essential for semantic analysis. One of the models for word sense disambiguation is the word space model which is very simple in the structure and effective. However, when the context word vectors in the word space model are merged into sense vectors in a sense inventory, they become typically very large but still suffer from the lexical scarcity. In this paper, we propose a word sense disambiguation method using word embedding that makes the sense inventory vectors compact and efficient due to its additive compositionality. Results of experiments with a Korean sense-tagged corpus show that our method is very effective.

Bayes 정리에 기반한 개선된 동형이의어 분별 모텔 (An Improved Homonym Disambiguation Model based on Bayes Theory)

  • 김창환;이왕우
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권12호
    • /
    • pp.1581-1590
    • /
    • 2001
  • 본 연구에서는 동형이의어 분별을 위하여 허정(2000)이 제시한 "사전 뜻풀이말에서 추출한 의미정보에 기반한 동형이의어 중의성 해결 시스템"이 가지는 문제점과 향후 연구과제로 제시한 문제들을 개선하기 위하여 Bayes 정리에 기반한 동형이의어 분별 모델을 제안한다. 의미 분별된 사전 뜻풀이말 코퍼스에서 동형이의어를 포함하고 있는 뜻풀이말을 구성하는 체언류(보통 명사), 용언류(형용사, 동사) 및 부사류(부사)를 의미 정보로 추출한다. 동형이의어의 의미별 사전 출현 빈도수가 비교적 균등한 기존 9개의 동형이의어 명사를 대상으로 실험하여 비교하였고, 새로 7개의 동형이의어 용언(형용사, 동사)을 추가하여 실험하였다. 9개의 동형이의어 명사를 대상으로 한 내부 실험에서 평균 99.37% 정확률을 보였으며 7개의 동형이의어 용언을 대상으로 한 내부 실험에서 평균 99.53% 정확률을 보였다. 외부 실험은 국어 정보베이스와 ETRI 코퍼스를 이용하여 9개의 동형이의어 명사를 대상으로 평균 84.42% 정확률과 세종계획의 350만 어절 규모의 외부 코퍼스를 이용하여 7개의 동형이의 어 용언을 대상으로 평균 70.81%의 정확률을 보였다. 정확률을 보였다.

  • PDF