• 제목/요약/키워드: semisymmetric spaces

검색결과 4건 처리시간 0.019초

A CLASSIFICATION OF (κ, μ)-CONTACT METRIC MANIFOLDS

  • Yildiz, Ahmet;De, Uday Chand
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.327-339
    • /
    • 2012
  • In this paper we study $h$-projectively semisymmetric, ${\phi}$-pro-jectively semisymmetric, $h$-Weyl semisymmetric and ${\phi}$-Weyl semisym- metric non-Sasakian ($k$, ${\mu}$)-contact metric manifolds. In all the cases the manifold becomes an ${\eta}$-Einstein manifold. As a consequence of these results we obtain that if a 3-dimensional non-Sasakian ($k$, ${\mu}$)-contact metric manifold satisfies such curvature conditions, then the manifold reduces to an N($k$)-contact metric manifold.

Paracontact Metric (k, 𝜇)-spaces Satisfying Certain Curvature Conditions

  • Mandal, Krishanu;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.163-174
    • /
    • 2019
  • The object of this paper is to classify paracontact metric ($k,{\mu}$)-spaces satisfying certain curvature conditions. We show that a paracontact metric ($k,{\mu}$)-space is Ricci semisymmetric if and only if the metric is Einstein, provided k < -1. Also we prove that a paracontact metric ($k,{\mu}$)-space is ${\phi}$-Ricci symmetric if and only if the metric is Einstein, provided $k{\neq}0$, -1. Moreover, we show that in a paracontact metric ($k,{\mu}$)-space with k < -1, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Several consequences of these results are discussed.

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION

  • Chaubey, Sudhakar Kr;Lee, Jae Won;Yadav, Sunil Kr
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.1113-1129
    • /
    • 2019
  • We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.