• Title/Summary/Keyword: semiparametric models

Search Result 32, Processing Time 0.024 seconds

A Bayesian Method to Semiparametric Hierarchical Selection Models (준모수적 계층적 선택모형에 대한 베이지안 방법)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.

  • PDF

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

A Bayesian analysis based on beta-mixtures for software reliability models

  • Nam Seungmin;Kim Kiwoong;Cho Sinsup;Yeo Inkwon
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.430-435
    • /
    • 2004
  • Nonhomogeneous Poisson Process is often used to model failure times which occurred in software reliability and hardware reliability models. It can be characterized by its intensity functions or mean value functions. Many parametric intensity models have been proposed to account for the failure mechanism in real situation. In this paper, we propose a Bayesian semiparametric approach based on beta-mixtures. Two real datasets are analyzed.

  • PDF

On Profile Likelihood for Gamma Frailty Models

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.999-1007
    • /
    • 2006
  • The semiparametric gamma frailty models have been often used for multivariate survival analysis because they give an explicit marginal likelihood. The commonly used estimation procedure is the profile likelihood method based on marginal likelihood, which provides the same parameter estimates as the EM algorithm. In this paper we show in finite samples the standard profile-likelihood method can lead to an underestimation of parameters, particularly for the frailty parameter. To overcome this problem, we propose an adjusted profile-likelihood method. For the illustration a numerical example and a small-sample simulation study are presented.

  • PDF

Semiparametric Kernel Poisson Regression for Longitudinal Count Data

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.1003-1011
    • /
    • 2008
  • Mixed-effect Poisson regression models are widely used for analysis of correlated count data such as those found in longitudinal studies. In this paper, we consider kernel extensions with semiparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

Semiparametric and Nonparametric Modeling for Matched Studies

  • Kim, In-Young;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • This study describes a new graphical method for assessing and characterizing effect modification by a matching covariate in matched case-control studies. This method to understand effect modification is based on a semiparametric model using a varying coefficient model. The method allows for nonparametric relationships between effect modification and other covariates, or can be useful in suggesting parametric models. This method can be applied to examining effect modification by any ordered categorical or continuous covariates for which cases have been matched with controls. The method applies to effect modification when causality might be reasonably assumed. An example from veterinary medicine is used to demonstrate our approach. The simulation results show that this method, when based on linear, quadratic and nonparametric effect modification, can be more powerful than both a parametric multiplicative model fit and a fully nonparametric generalized additive model fit.

  • PDF

A semiparametric method to measure predictive accuracy of covariates for doubly censored survival outcomes

  • Han, Seungbong;Lee, JungBok
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.343-353
    • /
    • 2016
  • In doubly-censored data, an originating event time and a terminating event time are interval-censored. In certain analyses of such data, a researcher might be interested in the elapsed time between the originating and terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model evaluation method to measure the predictive ability of a model based on negative predictive values. We use a semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely used to build prediction models or nomograms.

Residual-based copula parameter estimation (잔차를 이용한 코플라 모수 추정)

  • Na, Okyoung;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.267-277
    • /
    • 2016
  • This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.