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AbstractAbstractAbstractAbstract

The semiparametric gamma frailty models have been often used for
multivariate survival analysis because they give an explicit marginal
likelihood. The commonly used estimation procedure is the profile
likelihood method based on marginal likelihood, which provides the same
parameter estimates as the EM algorithm. In this paper we show in finite
samples the standard profile-likelihood method can lead to an
underestimation of parameters, particularly for the frailty parameter. To
overcome this problem, we propose an adjusted profile-likelihood method.
For the illustration a numerical example and a small-sample simulation
study are presented.
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1. Introduction1. Introduction1. Introduction1. Introduction

Frailty models, extensions of Cox's proportional hazards models, have been

widely used for the analysis of various correlated and/or heterogeneous event-time

data, for example, from the study of biomedicine (Hougaard, 2000) or econometrics

(Horowitz, 1999; Clapp et al., 2006). For the inferences many authors have

proposed several likelihood-based methods. The marginal likelihood (i.e., observed

data likelihood), which is obtained by integrating out the frailties, has been often

used. In particular, gamma frailty models give an explicit marginal likelihood

(Nielsen et al., 1992; Andersen et al., 1997).

In this paper we focus on the estimation of frailty parameter in the

semiparametric gamma frailty models allowing unspecified baseline hazard. Note

here that the handling of the nuisance parameters in the baseline hazard is a main
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issue. The usual solution is to profile out the nuisance parameters (Murphy and

van der Vaart, 2000). The profile likelihood method based on marginal likelihood

has been usually used, and it leads to the same parameter estimates as the EM

algorithm (Nielsen et al., 1992; Andersen et al., 1997; Murphy and van der Vaart,

2000). For the elimination of nuisance parameters, these methods all use the types

of the discrete nonparametric Breslow (1972) estimates.

Recently, in semiparametric gamma frailty models Rondeau et al. (2003) and

Baker and Henderson (2005) have numerically showed that the use of such

Breslow estimates in the EM method can lead to finite sample underestimation of

parameters, particularly for frailty parameters. For the reduction of such bias they

have proposed the use of the continuous nonparametric estimate, instead of the

Breslow estimate, for the baseline hazard.

The bias problem may also occur because the number of nuisance parameters in

the baseline hazard increases with sample size. That is, under this situation the

uncertainties in the nuisance parameter estimation should be considered in

estimating the frailty parameter. However, there is no such consideration in the

standard profile likelihood, leading to a downward bias, especially for the frailty

parameter (Ha and Lee, 2005). This problem can be solved by an appropriate

modification (e.g. an adjusted profile likelihood) for the standard profile likelihood

(Severini, 1998; Lee and Nelder, 1996, 2001). Thus, in this paper we propose a

new method to improve the standard profile-likelihood method. Notice here that

we still use the Breslow estimate.

The paper is organized as follows. In Section 2 we review the standard profile

marginal-likelihood method for the gamma frailty models, and then propose a new

profile-likelihood method. In Section 3 the proposed method is illustrated by using

a numerical example based on a well-known real data set and a small-sample

simulation study. Finally, some remarks are given in Section 4.

2. Profile Likelihoods for Frailty Models2. Profile Likelihoods for Frailty Models2. Profile Likelihoods for Frailty Models2. Profile Likelihoods for Frailty Models

Let T ij be the survival time for the jth observation on the ith subject

(
i=1,⋯ ,q ; j= 1,⋯ ,n i ;n=∑

i
n i
) and C ij be the corresponding censoring time.

Let the observable random variables be y ij= min(T ij,C ij ) and δ ij= I(T ij≤C ij),

where I(⋅) is the indicator function. Denoted by Ui the unobserved

frailty(random effect) for the ith subject.
The semiparametric gamma frailty models are described as follows. Given

U i=u i, the conditional hazard function of T ij has the form

λ ij(t|u i)=λ 0(t) exp(x
T
ijβ)u i, (1)
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where λ 0(⋅) is an unspecified baseline hazard function and β is a p×1

vector of fixed effects associated with fixed covariate vector x ij= (x ij1,⋯,x ijp) T.
Here, the frailties Ui's are assumed to be independent and identically

distributed from a gamma distribution with mean E(U i)=0 and var (U i )=α

(Nielsen et al., 1992). For the Ui other frailty distributions such as lognormal

can be assumed (McGilchrist and Aisbett, 1991; Hougaard, 2000; Ha et al.,

2001).

2.1 Standard Profile Likelihood2.1 Standard Profile Likelihood2.1 Standard Profile Likelihood2.1 Standard Profile Likelihood

For the inference the marginal likelihood, denoted by m, has been often

used (e.g., Nielsen et al., 1992; Andersen et al., 1997); it can be obtained by

integrating out the frailties from the hierarchical likelihood (h-likelihood, Lee

and Nelder, 1996; Ha et al., 2001):

m = m(λ 0,β,α)=∑
i
log{⌠⌡ exp(h i)du i}, (2)

where
h i=∑

j
ℓ 1ij+ ℓ 2i

, ℓ 1ij=ℓ 1ij(λ 0,β;y ij|u i) is the logarithm of the conditional

density function for (y ij ,δ ij) given U i=u i, and ℓ 2i=ℓ 2i(α;u i) is the logarithm

of the density function for Ui with parameter α.

For the gamma frailty models (1), we have from (2) an explicit marginal

likelihood:

m=m(λ 0,β,α) = ∑
ij
δ ij{x

T
ijβ + logλ 0(y ij)}

+ ∑
i
{-(α -1+ δ i+) log(α

-1+μ i+)+ logΓ(α
-1+ δ i+)- f(α)},

(3)

where
δ i+=∑

j
δ ij, μ i+=∑

j
μ ij=∑

j
Λ 0(y ij)exp (x

T
ijβ)
, Λ 0 (t)=

⌠
⌡

t

-∞
λ 0 (k)dk is the

baseline cumulative hazard function and f(α)= logΓ(α -1)+α -1 logα.
The model (1) can be directly fitted using m of (3) if the parametric

form(e.g. Weibull) for the baseline hazard λ0(t) in (1) is specified (Ha and

Lee, 2003). However, in this paper the functional form of the λ0(t) is

unknown.

For the model (1) the usual profile-likelihood method based on marginal

likelihood is as follows. Following Breslow (1972), many authors (e.g. Andersen et

al., 1997; Ha et al., 2001) considered the baseline cumulative hazard function

Λ 0(t) to be a step function with jumps at the s distinct observed death times,
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Λ 0(t)= ∑
k:y (k)≤t

λ 0k,
(4)

where y (k) is the kth (k=1,…,s) smallest distinct death time among the y ij's,

and λ 0k=λ 0(y (k)). Under the assumption (4), the estimates λ0k̂ from

∂m/∂λ 0k=0 are substituted into the marginal likelihood (3). That is, the

standard profile likelihood eliminating the nuisance parameters λ0, denoted by

PL1, based on m of (3) is defined by

PL1 (β,α)=m| λ 0= λ 0̂,
(5)

where λ 0=(λ 01,…,λ 0s)
T and λ 0̂= (λ01̂,…,λ0ŝ)

T with

λ 0k̂ =
d (k)

∑
(i,j)∈R(y (k))

exp(xTijβ) u î

and u î=
α -1+δ i+
α -1+μ i+

.

Here, R(y (k))={ ( i,j):y ij≥y (k)} is the risk set at y (k). In particular, the

maximization of profile likelihood (PL1) gives the same parameter estimates

for (β,α) as the EM algorithm (Nielsen et al., 1992; Murphy and van der

Vaart, 2000).

2.2 Proposed Profile Likelihood2.2 Proposed Profile Likelihood2.2 Proposed Profile Likelihood2.2 Proposed Profile Likelihood

In this paper we focus on the estimation of the frailty parameter α. Note

that the number of nuisance parameters λ0 in (1) increases with sample size

n. Under this situation, the uncertainties in the nuisance parameter estimation
should be considered in estimating the α. However, there is no such

consideration in PL1 of (5), leading to a severly downward bias for α (Ha and

Lee, 2005). To overcome this problem, an appropriate modification for PL1

would be useful.

Following Lee and Nelder (2001), it is recommended to use an adjusted profile

likelihood. Let ℓ be a likelihood, for example, a marginal likelihood m of (2).
Lee and Nelder (2001) considered a function pθ(ℓ), defined by

p θ(ℓ)=[ℓ-
1
2
log det{D(ℓ,θ)/(2π)}]|

θ= θ̂
, (6)

where D(ℓ,θ)=-∂ 2ℓ/∂θ 2 and θ̂ solves ∂ℓ/∂θ=0. The function pθ(⋅) in (6)
produces an adjusted profile likelihood, eliminating nuisance parameters θ,

which can be fixed effects β or λ0, or random effects u= (u 1 ,⋯,u q ) T. The
second term on the right-hand side of (6) can be interpreted as a penalty

term, which subtracts from the ordinary profile likelihood the undeserved
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information on the nuisance parameters θ: for the further details see Lee and

Nelder (2001) and Pawitan (2001).

From (6) we have found via simulation studies that the use of pw(m), not

p λ0(m), performs well. Here ω=(ω 1,⋯,ω s) T with ω k= logλ 0k. In particular, we
have experienced that the estimate of α cannot be obtained by maximizing

p λ0(m) because the p λ0(m) is indeed increasing with increasing values of α.

Thus, the proposed profile marginal likelihood, denoted by PL2, is defined by

PL2 (β,α)=p w(m)=[m-
1
2
log det {D(m,ω)/(2π)}]|

ω= ω̂
, (7)

where D(m,ω )=-∂ 2m/∂ω 2 and ω̂ solves ∂m/∂ω= 0. Note here that the

solutions of wk's are given by ω k̂= log λ0k̂ with λ0k̂ in (5).

3. Illustration3. Illustration3. Illustration3. Illustration

For the illustration, we compare the performance of the proposed PL2 method in

(7) with that of the standard PL1 method in (5). Here we present a numerical

example and a simulation study. We have found that the PL1 performs well for

the estimation of β given α. Thus, for the estimation of β given α we

suggest the PL2 method also uses the PL1. Note that, given α, both methods

(PL1 and PL2) provide the same estimates for β, but that they give different

estimates for α. As a result, both methods give different estimates for (β,α).

3.1 Numerical Example3.1 Numerical Example3.1 Numerical Example3.1 Numerical Example

The kidney infection data set from McGilchrist and Aisbett (1991) consists of

times to the first and second recurrences of infection in 38 kidney patients using a

portable dialysis machine. Infections can occur at the location of insertion of the

catheter. The catheter is later removed if infection occurs and can be removed for

other reasons, which we regard as censoring. Here, each survival time is time to

infection since insertion of the catheter. The survival times from the same patient

are likely to be correlated because of frailty describing the patient's effect. We

use a single covariate, the sex of the patients, coded as 1 for male and 2 for

female. The estimation results on the model (1) are given in Table 1.

<Table 1> The estimation results using the two profile

likelihoods in the kidney infection data
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Method α̂ β̂
PL1(Standard) 0.39 -1.54

PL2(Proposed) 0.49 -1.62

Note: α̂ and β̂ are the estimates of frailty parameter

and regression parameter, respectively.

<Figure 1> Profile likelihoods (PL1 and PL2) for frailty parameter α

As expected, the absolute magnitude of estimates from the PL1 is smaller than

that from the PL2. These results indicate that the maximization of PL1 may give

an underestimation for frailty and regression parameters ( α,β). In addition, the

two profile likelihoods (PL1 and PL2) are computed at each α and the results

are plotted in Figure 1. We again see that the two profile likelihoods for α

are maximized at the different values of α, leading to α̂= 0.39 for PL1 and

α̂= 0.49 for PL2. Thus, we claim the nuisance parameters have to be

eliminated properly in order to concentrate the inference on the parameter of

interest.

3.2 Simulation Study3.2 Simulation Study3.2 Simulation Study3.2 Simulation Study
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Simulation studies, using 200 replications of simulated data, are presented to

investigate the performances of the proposed PL2 method over the standard PL1.

Under the model (1) we generate data assuming the exponential baseline hazard

λ 0(t)=1, one binary covariate x ij with β=1, and α = 0.5,1.0. In particular, we

set x ij to 0 for the first q/2 subjects, to form the control group, and x ij to 1

for the remaining q/2, to form the treatment group: see also Ha et al. (2001).
We consider the two small samples as in 50 pairs and 100 pairs, i.e.,

n=∑
q

i=1
n i=100 ,200 with (q ,n i )=(50,2),(100,2). Here, we chose the

no-censoring case because such situation yielded larger biased estimates for

α than in censoring case: see for example the simulation results by Nielsen

et al. (1992). Moreover, if satisfactory results could be obtained for these,

good results would follow more generally. From 200 replications of simulated

data we compute the mean, standard deviation (SD) and mean squared error

(MSE) for α̂ and β̂. For the computation we used SAS/IML.

<Table 2> Simulation results on α̂ and β̂ using the two profile likelihoods

α n Method
α̂

Mean SD MSE

β̂

Mean SD MSE

0.5

100 PL1

PL2

0.34 0.238 0.084

0.44 0.270 0.077

0.94 0.293 0.089

0.98 0.306 0.093

200 PL1

PL2

0.43 0.182 0.038

0.49 0.194 0.038

0.98 0.235 0.055

1.00 0.239 0.057

1.0

100 PL1

PL2

0.80 0.284 0.119

0.96 0.327 0.108

0.95 0.381 0.147

0.98 0.395 0.156

200 PL1

PL2

0.90 0.240 0.067

0.99 0.258 0.066

0.98 0.281 0.079

1.00 0.286 0.081

Note: The simulation is conducted with 200 replications at each gamma frailty

variance α and true regression parameter β=1.

The results are summarized in Table 2. Overall, these results confirm those of

Table 1 and Figure 1. As expected, the bias increases with frailty and decreasing

sample size. The PL1 method shows a slight bias for regression parameter β,

but leads to severely downward biases, in all cases considered, for frailty

parameter α. The proposed PL2 method removes noticeably such biases. We

observe that the PL2 method has larger SD than the PL1 method, caused by

the underestimation of the PL1. The results of Table 2 demonstrate that the

proposed PL2 method reduces effectively such biases from the PL1.
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4. Remarks4. Remarks4. Remarks4. Remarks

For the finite samples on the model (1) we have numerically showed that the

proposed method (PL2) works well and improves largely the standard method

(PL1). Thus, care is necessary in using the profile likelihood when the number of

nuisance parameters is large: see also Ha and Lee (2005). The further theoretical

work is required on the PL2, for example, about the formal proof of parameter

orthogonality of ω and β in the sense of Cox and Reid (1987) and the

asymptotic justification as in Parner (1998).

The PL2 method needs a marginal likelihood, which usually has no explicit

form; the marginal likelihood often requires an intractable integration, for example,

for lognormal frailty mode1s. Thus, the use of PL2 can be restricted. For such

cases, an adjusted profile likelihood based on h-likelihood (Ha et al., 2001; Ha and

Lee, 2005) would be very useful.
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