• Title/Summary/Keyword: semiparametric method

Search Result 42, Processing Time 0.018 seconds

Semiparametric Kernel Poisson Regression for Longitudinal Count Data

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.1003-1011
    • /
    • 2008
  • Mixed-effect Poisson regression models are widely used for analysis of correlated count data such as those found in longitudinal studies. In this paper, we consider kernel extensions with semiparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

Semiparametric Regression Splines in Matched Case-Control Studies

  • Kim, In-Young;Carroll, Raymond J.;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.167-170
    • /
    • 2003
  • We develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: an approximate crossvalidation scheme to estimate the smoothing parameter inherent in regression splines, as well as Monte Carlo Expectation Maximization (MCEM) and Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM and Bayesian approaches using simulation, showing that they appear approximately equally efficient, with the approximate cross-validation method being computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.

  • PDF

Semiparametric kernel logistic regression with longitudinal data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.385-392
    • /
    • 2012
  • Logistic regression is a well known binary classification method in the field of statistical learning. Mixed-effect regression models are widely used for the analysis of correlated data such as those found in longitudinal studies. We consider kernel extensions with semiparametric fixed effects and parametric random effects for the logistic regression. The estimation is performed through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of optimal hyperparameters, cross-validation techniques are employed. Numerical results are then presented to indicate the performance of the proposed procedure.

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

A GEE approach for the semiparametric accelerated lifetime model with multivariate interval-censored data

  • Maru Kim;Sangbum Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.389-402
    • /
    • 2023
  • Multivariate or clustered failure time data often occur in many medical, epidemiological, and socio-economic studies when survival data are collected from several research centers. If the data are periodically observed as in a longitudinal study, survival times are often subject to various types of interval-censoring, creating multivariate interval-censored data. Then, the event times of interest may be correlated among individuals who come from the same cluster. In this article, we propose a unified linear regression method for analyzing multivariate interval-censored data. We consider a semiparametric multivariate accelerated failure time model as a statistical analysis tool and develop a generalized Buckley-James method to make inferences by imputing interval-censored observations with their conditional mean values. Since the study population consists of several heterogeneous clusters, where the subjects in the same cluster may be related, we propose a generalized estimating equations approach to accommodate potential dependence in clusters. Our simulation results confirm that the proposed estimator is robust to misspecification of working covariance matrix and statistical efficiency can increase when the working covariance structure is close to the truth. The proposed method is applied to the dataset from a diabetic retinopathy study.

A Bayesian Method to Semiparametric Hierarchical Selection Models (준모수적 계층적 선택모형에 대한 베이지안 방법)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.

  • PDF

Semiparametric Seasonal Cointegrating Rank Selection

  • Seong, Byeong-Chan;Ahn, Sung-K.;Ch, Sin-Sup
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.791-797
    • /
    • 2011
  • This paper considers the issue of seasonal cointegrating rank selection by information criteria as the extension of Cheng and Phillips (2009). The method does not require the specification of lag length in vector autoregression, is convenient in empirical work, and is in a semiparametric context because it allows for a general short memory error component in the model with only lags related to error correction terms. Some limit properties of usual information criteria are given for the rank selection and small Monte Carlo simulations are conducted to evaluate the performances of the criteria.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

SOME PROPERTIES OF SIMEX ESTIMATOR IN PARTIALLY LINEAR MEASUREMENT ERROR MODEL

  • Meeseon Jeong;Kim, Choongrak
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.85-92
    • /
    • 2003
  • We consider the partially linear model E(Y) : X$^{t}$ $\beta$+η(Z) when the X's are measured with additive error. The semiparametric likelihood estimation ignoring the measurement error gives inconsistent estimator for both $\beta$ and η(.). In this paper we suggest the SIMEX estimator for f to correct the bias induced by measurement error, and explore its properties. We show that the rational linear extrapolant is proper in extrapolation step in the sense that the SIMEX method under this extrapolant gives consistent estimator It is also shown that the SIMEX estimator is asymptotically equivalent to the semiparametric version of the usual parametric correction for attenuation suggested by Liang et al. (1999) A simulation study is given to compare two variance estimating methods for SIMEX estimator.