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Abstract
Multivariate or clustered failure time data often occur in many medical, epidemiological, and socio-economic

studies when survival data are collected from several research centers. If the data are periodically observed as
in a longitudinal study, survival times are often subject to various types of interval-censoring, creating multi-
variate interval-censored data. Then, the event times of interest may be correlated among individuals who come
from the same cluster. In this article, we propose a unified linear regression method for analyzing multivariate
interval-censored data. We consider a semiparametric multivariate accelerated failure time model as a statistical
analysis tool and develop a generalized Buckley-James method to make inferences by imputing interval-censored
observations with their conditional mean values. Since the study population consists of several heterogeneous
clusters, where the subjects in the same cluster may be related, we propose a generalized estimating equations
approach to accommodate potential dependence in clusters. Our simulation results confirm that the proposed es-
timator is robust to misspecification of working covariance matrix and statistical efficiency can increase when the
working covariance structure is close to the truth. The proposed method is applied to the dataset from a diabetic
retinopathy study.

Keywords: accelerated failure time model, Buckley-James method, clustered data, generalized
estimating equation, interval-censored data, survival analysis

1. Introduction

Survival data, also called time-to-event data often occur in many medical, epidemiological, and socio-
economic studies with various types of censoring schemes. Among them, right-censored data have
been most frequently studied as a standard survival data format, along with well-established methods
and theories in statistics and applied statistics (Kalbfleisch and Prentice, 2002). In practice, how-
ever, many clinical studies may involve more complex types of censoring, such as interval-censored
data, partly interval-censored data, and doubly interval-censored data, for which existing inference
methodologies and theories cannot be used in a straightforward manner. By “interval-censored” data,
we usually mean that the failure time of interest cannot be observed directly, but is only known to
have occurred within a time interval. Interval-censoring commonly occurs in many areas, such as
epidemiological experiments, and medical and longitudinal studies, particularly when subjects cannot
be followed up.

In practice, there are several types of interval-censored data. When the failure event is only known
to occur within a certain time interval, it is called “case-2” interval-censoring. If there is a single
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examination at a particular time, then the subject is known to have already suffered from the event
or not at the time. This is the so-called “case-1” interval-censoring. If failure times are exactly
observed for some subjects while others are only known to lie within certain intervals, the dataset
is partly interval-censored (PIC) data or doubly-censored (DC) data, depending on the presence of
left-censoring. We can easily see these types of data in many clinical and epidemiological researches.
For example, the event of interest could be diabetic nephropathy or HIV infection, which is often
discovered during periodic clinic visits. If patients can take frequent visits, then their failure times can
be ascertained with adequate accuracy. However, since patients can usually take a limited number of
visits in practice, their failure times are known to lie within some intervals that may be too broad to be
treated as exact. It should be noted that semiparametric estimation methods and associated theories
vary considerably depending on the existence of exact failure time observations for analysis of interval
censoring data. See Sun (2006) for a comprehensive but thorough examination on this topic.

Regression analysis of interval-censored data with or without exact observations has been exten-
sively studied under various models. Many early studies on interval-censored data focused on the
nonparametric and semiparametric maximum likelihood estimation of underlying distribution func-
tion (Huang, 1996; Huang and Wellner, 1997; Wellner and Zhan, 1997; Shen, 1998). Estimation of
survival function via self-consistency equation was studied by Turnbull (1976). Huang (1999) stud-
ied nonparametric estimation of distribution function based on PIC data, and Kim (2003) studied the
nonparametric maximum likelihood estimation (NPMLE) for proportional hazards regression models.
Zhao et al. (2008) presented a class of generalized log-rank tests for PIC data and established their
asymptotic properties. Several M-estimation methods were investigated for linear regression with PIC
or DC data, assuming that the censoring time is assumed to be completely independent of event time
(Ren and Gu, 1997; Ren, 2003). Lin et al. (2012) and Ji et al. (2012) alternatively examined cen-
sored quantile regression models for DC data, based on the idea of redistribution-of-mass (Portnoy,
2003) and martingale equation Peng and Huang (2008), respectively. Kim et al. (2010) extended
the missing information principle (Efron, 1967) to the interval-censored median regression, while the
covariate type is restrictive as the continuous type is not affordable. More recently, a broad class of
semiparametric transformation models (Zeng et al., 2016; Mao et al., 2017; Gao and Chan, 2019;
Choi and Huang, 2021) and accelerated failure time (AFT) model (Gao et al., 2017; Choi et al., 2021)
were considered to analyze various types of interval-censored data.

Thus far, it is assumed that the event of interest occurs independently for each individual. How-
ever, failure time data are often clustered, where the subjects from the same cluster may be correlated,
but the subjects in different clusters can be treated to be independent. Several statistical methods have
been suggested to make inferences with clustered interval-censored data. Lam et al. (2010) proposed a
simple multiple imputation strategy to recover the order of occurrences based on the interval-censored
event times. Kor et al. (2013) discussed regression analysis of clustered interval-censored data based
on Cox’s proportional hazards model. Chen et al. (2016) considered the same problem but under the
semiparametric additive hazards mode by using a multiple imputation approach for inference. Zeng et
al. (2017) investigated the effects of possibly time-dependent covariates on multivariate failure times
by considering a linear transformation model with random effects and developed a novel nonpara-
metric maximum likelihood estimation under general interval-censoring schemes. However, most
approaches left the within-cluster dependence structure unspecified or just assumed independence.
Moreover, little work has been done to extend the generalized estimating equation (GEE) approach to
accommodate the dependence of clustered interval-censored data on AFT models.

In this article, we propose the Buckley and James (1979) method for imputing clustered interval-
censored data and develop an iterative GEE procedure for the AFT model that relates the logarithm
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of the failure time linearly to the covariates. We explore a general Buckley-James imputation method
for multivariate case-1, case-2 and partly interval-censored data. The proposed Buckley-James (BJ)
method enables us to impute the latent event time by its estimable conditional expectation given co-
variate. Since the imputed pseudo response involves the unknown residual distribution function, we
estimate it by using a modified self-consistency equation (Choi et al., 2021) After approximating the
pseudo-response of the latent event time through an iterative BJ procedure, we use a GEE procedure
to estimate the regression coefficient while accounting for potential correlation structure in clusters.
This method has the same concept as a GEE approach for complete data, because misspecification
of the working covariance matrix does not affect the consistency of the parameter estimator in the
multivariate linear model. When the working covariance matrix is close to the unknown true working
covariance matrix, the estimator has more statistical efficiency than that from the working indepen-
dence assumption (Chiou et al., 2014).

The remainder of this paper is organized as follows. The semiparametric AFT model and data are
introduced in Section 2.1 and methods to deal with clustered interval-censored data are explained in
Section 2.2. In Section 2.3, we propose the GEE approach with details. Section 3 reports simulation
results to assess the finite-sample properties of the proposed estimator. In Section 4, our proposed
methods are applied to the real data. We close the article with a discussion in Section 5.

2. Methods

2.1. Data and model

Consider multivariate failure time data that consist of n clusters and Ki subjects within cluster i =

1, . . . , n. For simplicity, we assume all n clusters have the same cluster size K, i.e., Ki = K. For
i = 1, . . . , n and k = 1, . . . ,K, let Tik be the failure time for the kth subject in the ith cluster, and
Xi = (Xi1, . . . , XiK) be the p × K covariate matrix of the ith cluster, with the kth column being denoted
by Xik. The semiparametric multivariate AFT model for the kth subject in the ith cluster specifies

log Tik = β′Xik + εik, (i = 1, . . . , n, k = 1, . . . ,K) , (2.1)

where β is a p-vector of regression coefficients and εi = (εi1, . . . , εiK) is a random vector, independent
and identically distributed across clusters with unknown underlying distribution function F. Within
a cluster, the components of εi1, . . . , εiK do not need to follow a common distribution and may be
correlated.

Under a general clustered interval-censoring scheme, we can formulate clustered interval-censored
data by considering a random sequence of examination times, denoted by 0 = Uik0 < Uik1 < · · · <
UikQ < Uik(Q+1) = ∞, where Q is a number of examination times for the kth subject in the ith cluster.
We do not need to model the entire sequence of these examination times, but can focus on the smallest
observed interval (Lik,Rik) that contains the latent event time Tik, because (Lik,Rik) only contributes
to the likelihood construction. Here, Lik = max{Uikq : Uikq ≤ Tik, q = 0, . . . ,Q} and Rik = min{Uikq :
Uikq > Tik, q = 1, . . . ,Q + 1} for the kth subject in the ith cluster. That is, (Lik,Rik) represents the
tightest observed interval that contains Tik.

Since there are several different types of clustered interval-censored data in practice and their
corresponding censoring mechanism is formalized in different ways, we next list the most relevant
cases. When Q ≥ 2, namely, in experiments with multiple examination times per subject, we only
know the survival time of interest Tik has occurred (i) before the left end point of the time interval
(Tik ≤ Lik), or (ii) within some random time interval (Lik < Tik ≤ Rik), or (iii) after the right end
point of the time interval (Tik > Rik). When Q = 1, that is, there is a one-time examination per
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each subject (let Uik be the single examination time), case-1 interval-censored (or current status)
data are created, in which the only knowledge about the failure time Tik is whether it has occurred
before Uik or not. In consequence, the survival time is either left-censored or right-censored. If a
non-ignorable proportion of exact failure times is also available for some patients in addition to these
interval-censoring sampling schemes, PIC or DC data are observed. That is, case-2 interval-censored
data plus exact observations are equivalent to PIC data, whereas case-1 interval-censored data plus
exact observations are DC data.

2.2. Generalized Buckley-James imputation for interval-censored data
2.2.1. Clustered case-2 interval-censored data

We first describe a new BJ method to impute censored failure times under clustered case-2 interval-
censoring. Let Yik = log Tik be the log-transformed failure time for the kth subject in the ith cluster.
Since Yik is interval-censored, we estimate its conditional expectation, given that Lik < Tik < Rik and
Xik, under model (2.1). By modifying the BJ imputation method for right-censored data, we define
the pseudo response of Yik, denoted by Y∗ik, as

Y∗ik (β) = E (Yik | Lik < Tik < Rik, Xik) = β′Xik + E (εik | lik(β) < εik < rik (β))

= β′Xik +

∫ rik(β)
lik(β) udF (u)

F {rik (β)} − F {lik(β)}
,

(2.2)

where lik(β) = log Lik − β
′Xik and rik(β) = log Rik − β

′Xik denote the residual terms, corresponding
to the endpoints in (Lik,Rik), respectively. Here, we assume that K clusters share a common residual
distribution F, because the cluster-specific distribution function is difficult to obtain from the current
setting. Notice that equation (2.2) assumes that F is known, which in fact should be estimated from
the data.

In order to estimate the residual distribution function F, one may solve the self-consistency equa-
tion (Turnbull, 1974, 1976) iteratively until convergence:

F (t) =
1

nK

n∑
i=1

K∑
k=1

F {rik (β) ∧ t} − F {lik (β) ∧ t}
F {rik (β)} − F {lik (β)}

. (2.3)

See also Wellner and Zhan (1997) for a more efficient iterative convex minorant algorithm to ap-
proximate F. However, these equation-based methods are usually difficult to implement and do not
necessarily result in the nonparametric maximum likelihood estimator (NPMLE) for F. Therefore,
we alternatively used a novel modified expectation-maximization (EM) algorithm (Choi et al., 2021)
to maximize the nonparametric log-likelihood function for F given β, based on {(lik(β), rik(β)), i =

1, . . . , n, k = 1, . . . ,K}.
To be specific, let Λ(·) ≡ Λ(·, β) = − log{1 − F(·, β)} denote the baseline cumulative hazards

function of the error term. Let −∞ = s0 < s1 < · · · < sm < ∞ denote the unique and ordered event
times of the observed set of {(Lik,Rik); i = 1, . . . , n, k = 1, . . .K}, where m is the number of unique
time points in a finite time horizon. With a slight abuse of notation, we write dΛ j ≡ dΛ(s j) to denote
the jump size of Λ(·) at time s j and let Λ j = Λ(s j) ≡

∑
t≤s j

dΛ(t). To invoke the EM algorithm, let
{Wik j} be independent subject-specific Poisson random variables with mean µ = dΛ j with density
function p(W = w; µ) = e−µµw/w!. The nonparametric log-likelihood function for Λ(·) for a fixed β
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can be written as

` (Λ) =

n∑
i=1

K∑
k=1

log
[
exp {−Λ (lik)} − I (Rik < ∞) exp {−Λ (rik)}

]
=

n∑
i=1

K∑
k=1

log P

 ∑
j:s j≤Lik

Wik j = 0

 + I (Rik < ∞) log

1 − P

 ∑
j:Lik<s j≤Rik

Wik j > 0



 .

Assuming that the Wik j’s are known, the complete-data log-likelihood function takes a simple
form `c(Λ; W) =

∑n
i=1

∑K
k=1

∑m
j=1 p(Wik j, dΛ j) under the constraints that

∑
j:s j≤Lik

Wik j = 0 and I(Rik <
∞)

∑
j:Lik<s j≤Rik

Wik j > 0. The E-step shows that the expected complete-data log-likelihood function is
equivalent to

EW {`
c (Λ; W)} =

n∑
i=1

K∑
k=1

m∑
j=1

I
(
s j ≤ R̃ik

) {
log

(
dΛ j

)
ξik j − dΛ j

}
,

where R̃ik = RikI(Rik < ∞) + LikI(Rik = ∞) and the conditional expectation ξik j ≡ EW (Wik j) is given
by

ξik j =

 dΛ jI
(
Lik < s j ≤ Rik < ∞

)
1 − exp

(
−

∑
j:Lik<s j≤Rik

dΛ j

)
 + dΛ jI

(
s j > R̃ik

)
. (2.4)

In the M-step, we can obtain a closed-form expression for dΛ j by solving the score likelihood equation
with respect to dΛ j, which leads to

dΛ̂ j =

∑n
i=1

∑K
k=1 ξik jI

(
s j ≤ R̃ik

)
∑n

i=1
∑K

k=1 I
(
s j ≤ R̃ik

) , j = 1, . . . ,m. (2.5)

Therefore, the proposed EM-based NPMLE for Λ(·) can then be calculated by simply iterating the
E-step (2.4) and the M-step (2.5) until convergence. The resulting estimator for F(·) is then obtained
by F̂(·) = 1 − exp{−Λ̂(·)}. Once we obtain the NPMLE F̂ for F, we can use Ŷik(β) to approximate
Y∗ik(β), where

Ŷik (β) = β′Xik +

∫ rik(β)
lik(β) udF̂(u)

F̂ {rik (β)} − F̂ {lik (β)}
. (2.6)

Equation (2.6) implies that the pseudo response Ŷik(β) is a weighted average of failure times over
[lik(β), rik(β)], based on the estimated residual function F̂. We note that when interval-censoring is
replaced by right-censoring, equation (2.6) reduces to the standard BJ imputation for right-censored
data. Therefore, our imputation strategy generalizes the conventional BJ method to more complex
censoring schemes.

2.2.2. Clustered case-1 interval-censored data

We next consider the proposed BJ imputation method for clustered case-1 interval-censoring (current
status) data, in which we observe {(Cik, δik, Xik), i = 1, . . . , n, k = 1, . . . ,K}, where Cik denotes the
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single examination time and δik = I(Tik ≤ Cik) is the censoring indicator. Note that current status
data is a mixture of left-censoring (δik = 1) and right-censoring (δik = 0). Let the observed error
term under model (2.1) denote by eik(β) = log Cik − β

′Xik. Since case-1 interval-censoring is a special
case of case-2 interval-censoring with Lik = −∞ or Rik = ∞, the imputed pseudo-response can be
approximated by

Ŷik (β) = β′Xik + δik

∫ eik(β)
−∞

udF̂(u)

F̂ {eik (β)}
+ (1 − δik)

∫ ∞
eik(β) udF̂(u)

1 − F̂ {eik (β)}
. (2.7)

To estimate the residual function F, one may solve the following self-consistency equation

F (t) =
1

nK

n∑
i=1

K∑
k=1

[
δik

F {eik (β) ∧ t}
F {eik (β)}

+ (1 − δik)
{

F (t) − F {eik (β) ∧ t}
1 − F {eik (β)}

}]
, (2.8)

or use a similar EM algorithm described above. Note that two formulations (2.7) and (2.8) are implied
from (2.6) and (2.3) respectively by letting F(lik) = F(−∞) = 0 if δik = 1 and F(rik) = F(∞) = 1 if
δik = 0.

2.2.3. Clustered partly interval-censored data

Our main focus in this article is clustered partly interval-censored (PIC) data. In this situation, the
failure times are exactly observed for some subjects, but only known to be within a certain time
interval for the rest. For clustered PIC data, we can observe {(δik, δikTik, (1−δik)Lik, (1−δik)Rik, Xik), i =

1, . . . , n, k = 1, . . . ,K}, where δik = I(Lik = Rik) is the censoring indicator. PIC data is in fact a mixture
of exact observations (i.e., δik = 1) and interval-censored data (i.e., δik = 0). Therefore, we can derive
the pseudo response of Yik, denoted by Y∗ik, as

Y∗ik (β) = δikYik + (1 − δik) E (Yik | Lik < Tik < Rik, Xik)

= δikYik + (1 − δik)
[
β′Xik + E {εik | lik (β) < εik < rik (β)}

]
= δikYik + (1 − δik)

β′Xik +

∫ rik(β)
lik(β) udF(u)

F {rik (β)} − F {lik (β)}

 .
(2.9)

We note that under conventional right-censored data, the above imputation formula reduces to the
standard BJ equation:

Y∗ik (β) = δikYik + (1 − δik)

β′Xik +

∫ ∞
eik(β) udF(u)

1 − F {eik (β)}

 ,
where eik(β) = Yik −β

′Xik represents the observed residual term under model (2.1). Equation (2.9) can
also include the BJ method for DC data by letting lik(β) = −∞ for left-censoring and rik(β) = ∞ for
right-censoring.

To approximate Y∗ik, we again have to estimate F in a similar way, as discussed in Section 2.2.1.
To this end, one may solve iteratively the self-consistency equation

F (t) =
1

nK

n∑
i=1

K∑
k=1

[
δikI {eik (β) ≤ t} + (1 − δik)

{
F {rik (β) ∧ t} − F {lik (β) ∧ t}

F {rik (β)} − F {lik (β)}

}]
(2.10)
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until convergence or develop an EM-based method to locate an NPMLE. After we get F̂, we can make
use of Ŷik(β) to approximate Y∗ik.

Ŷik (β) = δikYik + (1 − δik)

β′Xik +

∫ rik(β)
lik(β) udF̂(u)

F̂ {rik (β)} − F̂ {lik (β)}

 . (2.11)

2.3. GEE-based inference procedure

Once we obtain the pseudo response for each individual, we can define Ŷi(β) = {Ŷi1(β), . . . , ŶiK(β)}
for the response vector of the ith cluster. We already defined Xi as a p × K covariate matrix for cluster
i. The BJ estimator (Buckley and James, 1979; Jin et al., 2006) is based on the following least-square
operator

Ln (b) =

 n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)′−1  n∑
i=1

(
Xi − X̄

) (
Ŷi(b) − Ȳ(b)

)′ , (2.12)

where Ȳ(b) = n−1 ∑n
i=1 Ŷi(b), X̄ = n−1 ∑n

i=1 Xi and b is an estimator of β. Equation (2.12) leads to an
iterative algorithm:

β̂(m)
n = Ln

(
β̂(m−1)

n

)
, (m ≥ 1) .

It is well known that if the initial estimator β̂(0)
n is consistent and asymptotically normal, β̂(m)

n is con-
sistent and asymptotically normal for every m ≥ 1 (Jin et al., 2006; Chiou et al., 2014). Although this
estimator is consistent, we can improve its efficiency since it completely ignores the within-cluster
dependence. Equation (2.12) is a special case of our GEE estimator with a proper working indepen-
dence covariance structure. Therefore, we will incorporate the within-cluster dependence by using a
GEE-based method as follows.

The GEE approach was initially developed by Liang and Zeger (1986) in order to produce re-
gression estimates when analyzing repeated measures with non-normal response variables. For non-
censored data, the GEE approach can increase the statistical efficiency of the marginal regression
coefficient estimator by incorporating an inverse working covariance matrix as weight into the esti-
mating equation. A working covariance matrix does not need to be correctly specified. However,
when a working covariance matrix is close to the truth, it can improve the estimator’s efficiency. It
may contain additional working parameters, whose estimation does not affect the estimator’s consis-
tency. There are several assumptions for this. Observations within a cluster may be correlated but
observations in separate clusters should be independent. These assumptions are the same as that in
our model. That is why we can use the GEE approach to our AFT modeling which explains depen-
dence by using a working correlation structure to improve our estimator’s efficiency. This approach
was first adopted by Chiou et al. (2014) for longitudinal right-censored survival data. Our purpose
here is to extend their approach to various types of interval-censored data.

Suppose now that the working covariance matrix Ω has a parameter vector α. For a given prior
estimator b of β, and let α(b) be an estimator of α, we suggest updating the estimator iteratively by
solving the following GEE equation:

Un (β, b, α) =

n∑
i=1

(
Xi − X̄

)
Ω−1

i {α (b)}
(
Ŷi (b) − β′Xi

)′
= 0, (2.13)
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Table 1: Summary of simulation results with identical regression coefficients and identical marginal error
normal distribution for clustered PIC data based on 1000 replications

Error τ
Cens Par Bias SSE ASE

Exact πI IND EX AR1 IND EX AR1 IND EX AR1

Normal

0.3

80% 20% β1 −0.003 −0.006 −0.002 0.069 0.067 0.066 0.071 0.070 0.069
β2 0.002 −0.005 −0.006 0.110 0.107 0.103 0.107 0.097 0.101

50% 50% β1 −0.013 −0.006 −0.008 0.070 0.073 0.069 0.072 0.080 0.060
β2 0.017 0.085 0.013 0.115 0.111 0.113 0.113 0.116 0.102

20% 80% β1 0.016 0.019 0.014 0.084 0.082 0.079 0.095 0.089 0.084
β2 −0.019 −0.018 −0.018 0.126 0.123 0.120 0.130 0.129 0.113

0.6

80% 20% β1 0.001 0.002 0.003 0.069 0.066 0.062 0.073 0.076 0.069
β2 0.002 0.001 0.002 0.120 0.117 0.111 0.117 0.113 0.118

50% 50% β1 −0.009 −0.003 −0.008 0.075 0.070 0.069 0.079 0.080 0.075
β2 0.003 0.013 0.004 0.126 0.120 0.119 0.127 0.115 0.108

20% 80% β1 0.019 0.021 0.020 0.091 0.086 0.080 0.088 0.093 0.090
β2 −0.018 −0.031 −0.022 0.138 0.132 0.127 0.142 0.138 0.130

*πI is interval-censoring rate; SSE is the sampling standard errors; ASE is the average of estimated standard errors.

where X̄ = n−1 ∑n
i=1 Xi, and Ωi is a K × K nonsingular working weight matrix. This working weight

matrix Ωi involves a working parameter α, which may also depend on b. For given α and b, the
solution to (2.13) has a closed-form expression

Ln (b, α) =

 n∑
i=1

(
Xi − X̄

)
Ω−1

i {α (b)}
(
Xi − X̄

)′−1  n∑
i=1

(
Xi − X̄

)
Ω−1

i {α (b)}
(
Ŷi (b) − Ȳ (b)

)′ , (2.14)

where Ȳ(b) = n−1 ∑n
i=1 Ŷi(b).

The proposed estimation procedure can be carried out iteratively, as summarized as follows:

Step 1 : Obtain an initial estimate β̂(0)
n = bn of β with the naive GEE model and set m = 0.

Step 2 : Given β̂(m−1)
n , update the pseudo response Ŷik(β) using the proposed BJ algorithm.

Obtain an estimate of α, given β̂(m−1)
n , α̂n(β̂(m−1)

n ).

Step 3 : Update the regression coefficient β̂(m)
n by

β̂(m)
n = Ln

(
β̂(m−1)

n , α̂n

(
β̂(m−1)

n

))
.

Step 4 : Increase m by 1 and repeat Steps 2 and 3 until convergence.

We stop the iteration when either ‖β̂(k) − β̂(k−1)‖ ≤ 10−4 or the maximum number of iterations (set
to 100) is first achieved. When we compare the closed-form of the solution of the independent least-
squares equation (2.14) to that of equation (2.12), they are very similar except that equation (2.14)
has a working weight matrix Ω−1

i (α(b)). This part enables us to accommodate the within-cluster
dependence.

We can achieve the highest efficiency when Ωi(α) is chosen to be the true covariance of Yi(β0). The
variance of the estimator can be estimated by a resampling procedure. As we assume that all clusters
have the same size K, the working covariance matrix Ωi’s have the same size; they only differ with
the ith cluster when the cluster sizes are not equal. In practice, we may impose exchangeable (EX),
autoregressive with order one (AR1), or independence (IND) structure as a parsimonious working
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Table 2: Summary of simulation results with identical regression coefficients and identical marginal error EV
distribution for clustered PIC data based on 1000 replications

Error τ
Cens Par Bias SSE ASE

Exact πI IND EX AR1 IND EX AR1 IND EX AR1

EV

0.3

80% 20% β1 −0.011 −0.013 −0.011 0.046 0.044 0.044 0.044 0.054 0.049
β2 0.015 0.009 0.012 0.071 0.071 0.070 0.068 0.061 0.065

50% 50% β1 0.018 −0.019 −0.018 0.048 0.046 0.046 0.044 0.052 0.050
β2 0.018 0.020 0.021 0.076 0.074 0.072 0.072 0.065 0.063

20% 80% β1 0.006 0.003 0.004 0.052 0.051 0.050 0.056 0.055 0.046
β2 −0.005 −0.003 −0.003 0.078 0.076 0.074 0.081 0.085 0.077

0.6

80% 20% β1 −0.008 −0.012 −0.011 0.049 0.043 0.042 0.047 0.049 0.045
β2 0.013 0.016 0.013 0.074 0.067 0.067 0.070 0.060 0.061

50% 50% β1 −0.021 −0.026 −0.020 0.053 0.047 0.048 0.057 0.050 0.051
β2 0.024 0.025 0.022 0.081 0.076 0.074 0.079 0.082 0.071

20% 80% β1 0.003 0.006 0.007 0.060 0.054 0.052 0.065 0.063 0.061
β2 0.001 −0.007 −0.005 0.087 0.083 0.082 0.091 0.086 0.087

*πI is interval-censoring rate; SSE is the sampling standard errors; ASE is the average of estimated standard errors.

Table 3: Summary of simulation results with identical regression coefficients and identical marginal error
gamma distribution for clustered PIC data based on 1000 replications

Error τ
Cens Par Bias SSE ASE

Exact πI IND EX AR1 IND EX AR1 IND EX AR1

Gamma

0.3

80% 20% β1 −0.012 −0.010 −0.011 0.051 0.050 0.048 0.046 0.058 0.045
β2 0.014 0.013 0.013 0.073 0.073 0.071 0.068 0.080 0.063

50% 50% β1 −0.021 −0.020 −0.020 0.052 0.053 0.050 0.054 0.057 0.053
β2 0.024 0.025 0.023 0.075 0.075 0.073 0.078 0.079 0.075

20% 80% β1 −0.000 0.001 0.002 0.059 0.056 0.054 0.055 0.057 0.057
β2 0.000 0.002 0.001 0.084 0.080 0.080 0.088 0.086 0.086

0.6

80% 20% β1 −0.010 −0.009 −0.012 0.057 0.051 0.047 0.054 0.056 0.052
β2 0.016 0.013 0.011 0.075 0.074 0.068 0.079 0.077 0.071

50% 50% β1 −0.021 −0.021 −0.052 0.056 0.051 0.048 0.060 0.062 0.053
β2 0.025 0.023 0.024 0.077 0.079 0.072 0.074 0.071 0.069

20% 80% β1 0.001 0.002 0.000 0.058 0.054 0.052 0.062 0.051 0.055
β2 0.003 −0.001 −0.001 0.087 0.082 0.081 0.089 0.085 0.078

*πI is interval-censoring rate; SSE is the sampling standard errors; ASE is the average of estimated standard errors.

covariance. It should be noted that GEE is intended for simple clustering or repeated measures. It
cannot easily accommodate more complex designs such as nested or crossed groups; for example,
nested repeated measures within a subject or group. This is something better suited for a mixed-effect
model (McCulloch and Searle, 2004).

3. Simulation studies

We conducted two simulation studies to assess the finite-sample performance of the proposed BJ es-
timators with three working covariance structures, i.e., exchangeable (EX), autoregressive with order
one (AR1), and independence (IND) structures. In our first simulation study, we assumed a clustered
PIC failure time setting with identical regression coefficients across different clusters and identical
marginal error distribution. We considered n = 100 clusters and each cluster size was fixed at three,
i.e., K = 3. For cluster i, the failure time Ti = (Ti1,Ti2,Ti3)′ was generated from

log Tik = X1ik − X2ik + εik,
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Table 4: Summary of simulation results with identical regression coefficients and identical marginal error
normal distribution for clustered PIC data based on 1000 replications

Error τ
Cens Par Bias SSE ASE

Exact πI IND EX AR1 IND EX AR1 IND EX AR1

Normal

0.3

80% 20% β1 −0.007 0.001 −0.005 0.046 0.044 0.041 0.062 0.059 0.057
β2 0.005 −0.002 −0.003 0.098 0.097 0.095 0.097 0.092 0.091

50% 50% β1 −0.003 −0.003 −0.002 0.065 0.063 0.060 0.062 0.061 0.058
β2 0.007 0.063 0.007 0.103 0.099 0.095 0.103 0.102 0.102

20% 80% β1 0.006 0.014 0.002 0.074 0.071 0.069 0.085 0.079 0.078
β2 −0.009 −0.008 −0.011 0.116 0.112 0.110 0.119 0.119 0.111

0.6

80% 20% β1 0.004 0.003 0.001 0.063 0.056 0.051 0.063 0.056 0.054
β2 0.005 0.002 0.003 0.110 0.090 0.072 0.106 0.092 0.088

50% 50% β1 −0.002 −0.001 −0.003 0.055 0.050 0.039 0.068 0.060 0.055
β2 0.005 0.008 0.002 0.115 0.098 0.091 0.137 0.105 0.093

20% 80% β1 0.009 0.011 0.012 0.081 0.075 0.060 0.082 0.080 0.054
β2 −0.020 −0.011 −0.012 0.127 0.122 0.107 0.121 0.108 0.101

*πI is interval-censoring rate; SSE is the sampling standard errors; ASE is the average of estimated standard errors.

where X1ik ∼ N(0, 1) , X2ik can take three distinct numbers (1, 2, 3) with probability 1/3 for each.
The joint distribution of εi = (εi1, εi2, εi3)′ was specified by a common marginal distribution. Three
marginal error distributions were considered: (i) standard normal distribution, N(0, 1), (ii) extreme
value (EV) distribution, EV(location = −0.5, scale = 0.5), and (iii) log-transformed gamma distribu-
tion, log Γ(shape = 1.5, scale = 1). Dependence within cluster was created via Cholesky factorization,
so that Kendall’s τ was set to 0.3 and 0.6. We generated two examination times L ∼ Uniform(0, c) and
R ∼ L + Uniform(0, c + 1), where the constant c was varied to achieve desired censoring rates. For
PIC data, subjects could be left-censored at L, or right-censored at R, or interval-censored in (L,R).
By this set-up, the constant c was tuned to achieve the three levels of exact data percentage: 80%,
50%, and 20%. Then three working covariance cases were used: IND, EX and AR1. To evaluate
the performance of our method, we used the sample standard error (SSE) and average standard error
(ASE). They were based on 1000 replicates with 200 bootstrapped samples for each configuration. To
account for the clustered structure, the bootstrap sampling was conducted at the cluster level. That is,
once a cluster is sampled, then the entire elements in the cluster will be used for inference.

The simulation results are summarized in Tables 1–3, respectively, for different marginal distri-
butions. All estimators appear to be virtually unbiased. We can confirm the fact that our regression
coefficient estimator is consistent and robust to the misspecification of the working covariance. In
general, the sample standard error (SSE) and average standard error (ASE) are well-matched, sug-
gesting that the resampling procedure provides a valid inference. For a given censoring percentage,
as the dependence level increases, the difference of variances between the IND structure and other
structures becomes bigger. When the dependence among clusters is strong, we can improve the effi-
ciency of our estimator by using appropriate working covariance structures. The variances under the
AR1 are in general smaller than those from the EX structure, which is expected as the true covariance
structure is AR1 in this simulation setting. Notice that the efficiency of our estimator is higher when
the working covariance structure is closer to the truth as expected. Clearly, the proposed estimator is
more efficient as interval-censoring rates are lower.

In the second simulation study, we assumed a clustered PIC failure time setting with identical re-
gression coefficients across different clusters and identical marginal error distribution. We considered
n = 150 clusters and each cluster size was fixed at two, i.e., K = 2. For cluster i, the failure time
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Table 5: Summaries of results of semiparametric AFT models for (a) the original DRS dataset and (b) modified
DRS dataset

Data Effects IND EX AR1
EST SE EST SE EST SE

Original
Risk −1.039 0.462 −1.005 0.462 −1.005 0.488
Age 0.028 0.080 0.028 0.079 0.028 0.071

Treatment 0.366 0.091 0.386 0.089 0.378 0.098

Modified
Risk −1.191 0.512 −1.098 0.578 −1.095 0.552
Age 0.057 0.080 0.065 0.072 0.068 0.072

Treatment 0.415 0.197 0.394 0.163 0.394 0.149

Ti = (Ti1,Ti2)′ was generated from

log Tik = X1ik − X2ik + εik,

where X1ik ∼ N(0, 1) , X2ik had three distinct numbers, 1, 2, 3, with probability 1/3 for each. The joint
distribution of εi = (εi1, εi2)′ was specified by a common marginal distribution. Only one marginal
error distribution was considered: Normal distribution, N(0, 1). Other settings are equal to our first
simulation study.

The simulation results are summarized in Table 4. Similar to the first simulation study, all esti-
mators are unbiased. Furthermore, the sample standard error (SSE) is close to the average standard
error (ASE). As the AR1 structure is the true covariance structure in our setting, variances under AR1
are smaller than those from other variance structures. For a given censoring percentage, as the depen-
dence level increases, the difference in variances between IND and other variance structures becomes
bigger. Especially, the difference in variances between IND and AR1 (the true variance structure) is
big. This implies the fact that the efficiency of our estimator is higher when the working covariance
structure is closer to the truth as expected.

4. An application to modified DRS data

The diabetic retinopathy study (DRS) started from 1971 with the aim to examine the effectiveness of
laser treatment in delaying the onset of severe vision loss. Diabetic retinopathy is the most common
and serious eye complication of diabetes, because this may result in poor vision or blindness. The 197
patients in this dataset were a 50% random sample of the patients with “high-risk” diabetic retinopa-
thy, categorized by risk group 6 or higher is considered. Each patient had one eye randomized to laser
treatment and the other eye received no treatment. For each eye, the event of interest was the time
from initiation of treatment to the time when visual acuity dropped below 5/200 two visits in a row
(defined as “blindness”). Other interests were the efficacy of the laser treatment and the influence of
other risk factors. In addition to the treatment indicator, two covariates are available: age at diagnosis
of diabetes and risk group (6 to 12, rescaled to 0.5 to 1.0). Right-censoring was caused by death,
dropout, or the end of the study.

Originally, this dataset has exact and right-censored observations only. To illustrate our pro-
posed method, we generated a clustered PIC version of this data. Specifically, we randomly chose
observations among the exact data and we added and subtracted generated random numbers U ∼

Uniform(2, 5) to randomly selected observations to make them interval-censored or left-censored.
The numbers of left-censored, interval-censored, and right-censored observations are 45, 59, and 62,
respectively. We fitted the AFT model to the original and modified DRS datasets. The results are
summarized in Table 5. We reported estimated coefficients and their standard errors with IND, EX,
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and AR1 working weight matrix structures. The standard error of our estimator was based on 1000
bootstrap datasets. Comparing the two results, it can be seen that there is no significant difference in
estimating the coefficient of effects under each working weight matrix structure, and standard error
is also well estimated. Overall, the treatment remains statistically significant after data manipulation,
increasing the log-failure time by about 0.4 years on average. The risk factor appears to be nearly sig-
nificant, which means that the more risky group has a lower survival rate. Therefore, we can conclude
that our method estimates the coefficients of the model without significant differences by approxi-
mating the censoring data very well, even though we made the censoring data from the exact data on
purpose.

5. Discussion

In this article, we proposed a generalization of the Buckley-James method for imputing clustered
interval-censored data and an iterative GEE procedure for the AFT model to accommodate potential
correlation within clusters. Because of the merits of the GEE method, we do not need to estimate the
exact working weight matrix Ωi, and higher efficiency of our estimator may be achieved if Ωi is prop-
erly chosen to be close enough to the true covariance of Ŷi(b). Under regularity conditions, we may
show that our estimator has asymptotic consistency and asymptotic normality. However, depending
on the presence of exact observations, the theories can change substantially with possibly different
convergence rates and thus are not pursued in this article. For real data applications, we modified the
right-censored DRS data to create a PIC dataset. A possible example of clustered interval-censored
failure time data can arise when some failure times of interest are correlated and clustered into groups
due to sharing some common features, such as clinical sites, environmental factors, or certain un-
known characteristics.

We can extend our method to other settings. Even if we consider our clusters have the same size
K, we can assume each cluster has its own cluster size. For clustered failure times with unequal
cluster sizes, the working weight matrix Ωi has different dimensions for each cluster and can still be
constructed with IND, EX, and AR1 structures. We can also consider different marginal error dis-
tributions. For example, in our simulation studies, we imposed the same marginal error distribution.
Instead, the joint distribution of εi = (εi1, εi2, εi3)′ can be specified by three different marginal distri-
butions. In this case, the magnitude of their correlation may not be well accessed and thus omitted in
our studies.

In this article, we focused on the Buckley-James estimator, which is based on the least-square
principle for imputed mean responses when the outcome is censored. Alternatively, one may consider
rank-based inferences for interval-censored data (Choi and Choi, 2021; Choi et al., 2023), which are
generally more robust to model misspecification and potential outliers. Ritov (1990) showed that the
Buckley-James estimator and the log-rank estimator are asymptotically equivalent for right-censored
data. We expect that similar properties would hold for general interval-censored data. The benefit
of the Buckley-James estimator is that the correlation structure can be incorporated into the model
within the GEE framework as we showed in this article, which is generally not feasible with rank-
based estimating methods. It would be interesting to further explore the relationship between two
methods under interval-censoring.
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