• 제목/요약/키워드: semicycles

검색결과 4건 처리시간 0.017초

ON THE RECURSIVE SEQUENCE $x_{n+1}=\frac{a+bx_{n-1}}{A+Bx^k_n}$

  • Ahmed, A. M.;El-Owaidy, H. M.;Hamza, Alaa E.;Youssef, A. M.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.275-289
    • /
    • 2009
  • In this paper, we investigate the global behavior of the difference equation $x_{n+1}\;=\;\frac{a+bx_{n-1}}{A+Bx^k_n}$, n=0,1,..., where a,b,$B\;{\in}\;[0,\infty)$ and A, $k\;{\in}\;(0,\infty)$ with non-negative initial conditions.

  • PDF

The Dynamics of Solutions to the Equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$

  • Xu, Xiaona;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.153-164
    • /
    • 2010
  • We study the global asymptotic stability, the character of the semicycles, the periodic nature and oscillation of the positive solutions of the difference equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$, n=0, 1, 2, ${\cdots}$. where p, q ${\in}$ (0, ${\infty}$), q ${\neq}$ 2, k ${\in}$ {1, 2, ${\cdots}$} and the initial values $x_{-k}$, ${\cdots}$, $x_0$ are arbitrary positive real numbers.

BEHAVIOR OF POSITIVE SOLUTIONS OF A DIFFERENCE EQUATION

  • TOLLU, D.T.;YAZLIK, Y.;TASKARA, N.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.217-230
    • /
    • 2017
  • In this paper we deal with the difference equation $$y_{n+1}=\frac{ay_{n-1}}{by_ny_{n-1}+cy_{n-1}y_{n-2}+d}$$, $$n{\in}\mathbb{N}_0$$, where the coefficients a, b, c, d are positive real numbers and the initial conditions $y_{-2}$, $y_{-1}$, $y_0$ are nonnegative real numbers. Here, we investigate global asymptotic stability, periodicity, boundedness and oscillation of positive solutions of the above equation.

THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL ASYMPTOTIC STABILITY FOR A FOURTH-ORDER RATIONAL DIFFERENCE EQUATION

  • Li, Xianyi;Agarwal, Ravi P.
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.787-797
    • /
    • 2007
  • In this paper, the following fourth-order rational difference equation $$x_{n+1}=\frac{{x_n^b}+x_n-2x_{n-3}^b+a}{{x_n^bx_{n-2}+x_{n-3}^b+a}$$, n=0, 1, 2,..., where a, b ${\in}$ [0, ${\infty}$) and the initial values $X_{-3},\;X_{-2},\;X_{-1},\;X_0\;{\in}\;(0,\;{\infty})$, is considered and the rule of its trajectory structure is described clearly out. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is $1^+,\;1^-,\;1^+,\;4^-,\;3^+,\;1^-,\;2^+,\;2^-$ in a period, by which the positive equilibrium point of the equation is verified to be globally asymptotically stable.