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ON THE RECURSIVE SEQUENCE z,; = 42551
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ABSTRACT. In this paper, we investigate the global behavior of the differ-
ence equation
a+brn_1
Tpag = o 22nml o~ 0,1,
n+1 A+B$ﬁ ) 3oy
where a,b, B € [0,00) and A,k € (0,00) with non-negative initial condi-
tions.
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1. Introduction and preliminaries

Recently there has been a great interest in studying the behavior of rational
and non-rational nonlinear difference equations. A. M. Amleh et al [1] studied
the dynamics of

- _ a+brp
n+l — A+ Bzn_o
Gibbons et al [9]investigated the global behavior of the recursive sequence

o+ /Byn—l
=——  n=01,..
Yntt Y+ Yn ’
where a, 3, and y are nonnegative real numbers. El-Owaidy et al [7] studied the
dynamics of

n=01,..,

ba:n—l

Rt S =0,1,...,
Tp+1 A—-}-Bl‘ﬁ_z , N

where b, A, B and p are nonnegative real parameters. For related results see ([2]-
[5],[10]-]20]). Some of these results can be applied to biological and population
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models. In this paper we generalize the results obtained in [9] to the second-order
rational difference equation
a+bxry-1

Tpt1 = A+Bak 0 T 0,1,..., ¢y

where a,b, B € [0, 00) and 4, k € (0, co) with non-negative initial conditions such
that A+Bzk >0  Vn > 0. The change of variables of Eq.(1) by z, = \/_‘ Yns
yields

S+ Yn-1

Un+1 = T—{——y—g— N n:O, 1, veey (2}

where s = ¢ \/7’? and r = —. For definitions and notations, we refer the reader
to (16],[11],[12] and[13]).
Let I be an interval of real numbers and let

fiIxI—1

be a continuously differentiable function.
For every set of initial conditions {zo,z-1} C I, the difference equation

Tot1 = f(@p, Tn—1) , n=0,1,.., (3)
has a unique solution {z,}% _;. We denote by

of

P=

the partial derivatives of f(u, v) evaluated at the equilibrium Z of Eq.(3). The
equation

I _of
(%,%Z) and q—-}%(x,x

Un+1 = PYn + QYn—1 n=0,1,.., (4)

is called the linearized equation associated with Eq.(3) about the equilibrium
point Z. Then its characteristic equation is

M —pA—g=0. (5)

2. The recursive sequence yn11 = Y1/ (T + k)
In this section we study the global behavior of Eq.(2), when s = 0, that is
Eq.(2) yields
Yn—1

= , n=0,1,.. 6
yn+1 'f'+y§ 1 b 3 ( )

where y..; and yo are non-negative real numbers, & and r are positive real num-
bers.
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Theorem 1. The following statements are true

(1) If r > 1, then Eq.(6) has a unique equilibrium point ¥ = O which is
locally asymptotically stable.

(2) If r < 1, then Eq.(6) has two equilibrium points §j2 = 0 which is a repeller
and Y3 = /1 — r which is unstable, in fact saddle.

(3) If r = 1, then Eq.(6) has a unique equilibrium point §y = O which is
non-hyperbolic point.

Proof. The characteristic equation of the associated linearized equation about
%i,i=1,2,4is A — 1 =0, and about 73 is A> + k(1 — 7)A — 1 = 0, then the
results follow directly by applying the Linearized stability Theorem [13]. O

In the following Theorem we prove the global asymptotic stability of the zero
equilibrium point § =0 when r > 1.

Theorem 2. Assume that r > 1. The equilibrium point § = 0 is globally
asymptotically stable.

Proof. Let r > 1, by Theorem (1), § = 0 is locally asymptotically stable. Now
we show that § = 0 is a global attractor. We have
Yn—1 1

< —Yn— =0,1,2,..,
7‘—|—y£§ ,ryn 1, N

Ynt+1 =

then by induction, we get

1 1
Yon < (;)”yg and Yon—1 < (;)"y_l ,n=12 ...
Therefore lim y, =0. O

n—00

Theorem 3. A necessary and sufficient condition for Eq.(6) to have a prime

period two solution is r = 1. In this case the prime period two solution is of the
form

oy $,0,0,0, ... .

Furthermore; if r = 1, then every solution of Eq.(6) converges to a period (not
necessary prime) two solution

ey 6,0,0,0, ..
with ¢ >0 .

Proof. (Sufficiency): Let r = 1, for every ¢ > 0, we have
ey $,0,8,0, ...

is a prime period two solution for Eq.(6).
(Necessity): Assume that Eq.(6) has a prime period two solution

EARS ¢’ w? ¢7 w, s
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Then ¢ = F—T—%’? and o= ﬁ_%,; Hence,
¢ [(r—1) +¢F] = (7)

and

P [(r—1)+¢* =0. (8)

Assume for the sake of contradiction that r # 1. From (7), we have either ¢ = 0
or¢p = +1—r.

(1) If ¢ = 0, by (8), we get ¥ = ¢ = 0, which is a contradiction.

(2) If = Y1—r, by (8), we get ¢ = &1 —r, which is a contradiction.
Therefore r = 1. Now assume that 7 = 1 and {y,}%._, is a solution of Eq.(6).
Then

_ ke
y'nyn—l < O,

Yn+1l —Yn-1= 1+y£§ <

hence {y2,} and {y2,_1} are monotonically decreasing to two limits say ¢, and
¥. So, we obtain the equations

¢
14k

which imply that ¢9 = 0. O

¢ =

Theorem 4. Let § be an equilibrium point of Eq.(6). Then except possibly for
the first semicycle, every solution of Eq.(6) has semicycles of length one. '

Proof. Let {yn}oe_; be a solution of Eq.(6) with at least two semicycles, then
there exists N > 0 such that either

YN-1<Y<LyYyn or Yn-1=Y>Yn .

We assume the first case (the second case is similar and will be omitted). So we
get v

YN-1 y ~ YN ] -

= < ——— = and = > — = .

YN+1 _— yfv - Y Yn+42 , +yfv+1 r+ g Y
Thus yn1+1 < § < yn+2, and the result follows by induction. a

Theorem 5. Assume that r < 1, and §j = ¥/1—r. The following statements
are true:

(1) If yo < 4, and y_1 > §, then {yan—1} is monotonically increasing to oo,
and {yan} is monotonically decreasing to zero.

(2) If yo > §, and y—1 < 7§, then {y2n} is monotonically increasing to oo, and
{Y2n+1} is monotonically decreasing to zero.
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Proof. Let 7 < 1. (1) Assume that yo < § = ¥1—r,and y_1 > 5= V1 —r.
Then we have

On the recursive sequence z,41 = 279

Y-1 Y-1 -
= > =qYy_1 > 3
u r+yk T or+l-—vr y-1 ¥

Yo Yo

= < = <~.
Y2 T+y’f r+1l—r Yo Y

By induction, the odd sequence monotonically increases to a limit (say) L > 0,
while the even sequence monotonically decreases to a limit (say) M < oo. Hence,

M L
rroe A L=
which implies that M = 0, and L = oc.
(2) is similar to (1), and will be omitted. a

3. The recursive sequence Y1 = (s +yn—1)/ (r + 4¥)
In this section we investigate the global behavior of
s+ Yn-1
where s,r, and k are positive real numbers.

Ynt+1 = ) n=0,1,.., (9)

Lemma 1. The following statements are true:

(1) Assume that v > 1. Then Eq.(9) has a unique equilibrium point in
(0, -27).

(2) Assume that r < 1.

(a) If r > s, then Eq.(9) has a unique equilibrium point in (s,1].

(b) If r < s, then Eq.(9) has a unique equilibrium point in (1, 7).

(3) If r = 1, then Eq.(9) has a unique equilibrium point § = *+/s.

Proof. Clearly, 7 is an equilibrium point of Eq.(9) if and only if 7 is a root of
the function

f(z) ="+ (r - Dz —s, (10)

- r—1
increasing, then f(x) has a unique root 7 € (0, —%5). Equivalently Eq.(9) has a

unique equilibrium point 7 € (0, -27).

(2) Let r < 1. The function f(z) is decreasing on [s, ¥/ %H__—Q and increasing

on [ 4/ i;;,oo)

(a) Assume that r > s, then f(1) =7 — s > 0. In view of f(s) = s**! +rs—
2s < 0, since s < r < 1, Eq.(9) has a unique equilibrium point § € (s, 1].

(b) Assume that r < s. Then f(1) =7 —s < 0 and f(2) > 0, consequently
Eq.(9) has a unique equilibrium point g € (1, £).

(3) By (10), g = **/s. U

k+1
(1) Let 7 > 1, since f(0) = —s < 0, f(55) = (—) > 0, and f(z) is
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We apply the linearized stability Theorem to get a sufficient condition for the
equilibrium point § to be locally asymptotically stable.

Theorem 6. Assume r > 0, and § is the equilibrium point of Eq.(9). The
following statements are true:

(1) If g+ < 7, then ¥ is locally asymptotically stable.

(2) If " > £, then § is unstable, in fact saddle.

(3) If §**1 = £, then § is non-hyperbolic point.

Proof. The characteristic equation of the associated linearized equation to Eq.(9)
is A2 = pX + ¢, where
—~ki* 1

=Y and ¢= ——.
p r+37’“ an q 'I'-I—:ljk

By the linearized stability Theorem [13], we have:

(1) If o+ < %, then |p| < 1—¢ < 2, consequently ¥ is locally asymptotically
stable.

(2) If g+t > 2, then p? +4¢ > 0 and |p| > 1 — ¢, consequently 7 is unstable,
in fact saddle.

(3) If gh+! = #» then |p| = |1 — ¢|, consequently ¥ is non-hyperbolic point. [J

Definition ([6]). An Interval I of real numbers is said to be invariant under a
real function G (z,y) if G(z,y) € I Vz,y€ 1. :

We need the following Lemmas to prove the main result of this section.

Theorem 7. Assume that G(z,y) is a continuous Junction which is non - de-
creasing (nom-increasing) in x for each y and non-increasing (non-decreasing)
in y for each x. Assume that every solution of the equation

Yn+1 = G(yna yn—k); n= Oa ]-a see e (11)

has an inferior limit X\ and superior limit A such that A and A belong to an
invariant interval I = [a,b] under G. Let §j be a unique equilibrium point in I.
If the system

z=G(z,y) and y=G(yz) (12)

(z=G(y,z) and y=G(z,y)) (13)
has ezactly one solution in I, then § is a global attractor .

Proof. Let {yn},- _; be a solution of (11), A = limp s inf yn and A = limp,_,e0
Sup Yn. Assume that G(z,y) is non-decreasing (non-increasing) in z for each y
and non-increasing (non-decreasing) in y for each z. Take U; = G(A, ) (U =
G(AA)) and Ly = G(AA) (L1 = G(A,))). For every € € (0,A—a) Ing € N
such that

A—e<y, <A+ € Vn>ng.
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Then Ihn < X < A < Uj. Set Upty1 = G(Un,Ln) (Un+1 = G(Ln,Un)) and
Lpt1 =G(Ln,Up) (Lpt1 = G(Up, Ly)), n=1,2,.... One can see that

Hence {U,} is monotonically increasing to a number say U € I and {L,} is
monotonically decreasing to a number say L € I. This implies that (U, L) € I?
is a solution of system (12) ((13)). Therefore, U =L =7 =X = A. O

Corollary 1. Assume that G(z,y) is a continuous function which is non- de-
creasing (non-increasing) in = for each y and mon-increasing (non-decreasing)
iny for each . Let I = [a,b] be an invariant interval under G(z,y). Assume
that g € I is a unique equilibrium point of Eq.(11). Assume that J is a closed
interval such that G(z,y) € I Vz,y € J. If the system

z=G(z,y) and y=Gyz) (z=GCyz) and y=G(z,y))
has ezactly one solution in I2, then § is a global attractor with basin I*+1.

Theorem 8. Assume that r > 0. Then Eq.(9) has a period ( not necessary

prime) two solution {yn}f:;_1 if and only if (y—1,y0) s @ solution of the system
st+x sty

t=—r and y= e

r4y r+x

Furthermore, y_1 # yo if and only if {yn},._, is a prime period two solution

of Eq.(9).

Proof. Assume that (y_1, o) is a solution of system (14). Then

5+ y-1 —y and yp = s+y% s+

R Tl oredk

By induction yn4+3 = yn, n > —1. For the other direction let {yn}.-_, be a
period two solution. Then

(14)

N = = Yo-

y_8+y—1_ _ _
Pk 2TorayE oy

Clearly, y_1 # yo if and only if {y, }._; is a prime period two solution. d

Theorem 9. Let § be the positive equilibrium point of Eq.(9). Then except

possibly for the first semicycle, every solution of Eq.(9) has semicycles of length
one.

Proof. Let yp—1 < § < Yn O Ypn—1 = § > Yn. Consider yp,_1 < § < 1, (the other
case is similar and will be omitted), then we get

$+ Yn—1 s+ 7Y
T4yt r4gk

By induction we get the result. u

S+ yn s+y
r+yk T o+ gk

Yntl = =7y and yp42 = =g.
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In the following Theorem we determine more precisely necessary conditions
(on parameters) for § to be locally asymptotically stable and for § to be unstable.

Theorem 10. Assume that r > 1, and § is the eguilibrium point of Eq.(9). The
following statements are true

(1) Ifk <1, then § is locally asymptotically stable.

(2) Assume that k > 1. We have:

k41

(i) Ifs<k ( ,’;;_i) T, then ¥ s locally asymptotically stable.
k41

(i) If s> k (2:11) T, then § is unstable, in fact saddle.

k1

(igs) If s = k (1= ) , then § is non-hyperbolic.
Proof. 1t is easy to show that
o1 ;S_ _ S(k o 1)
7 < eIy it
=k+1 s 7 sk—1)  _pq1 _ s = _ s(k—1)
7 > T <k(—1) Fl=r =7 1)

(1) Let k < 1, then § > Q%F"T’ whence 7*t! < #. Hence, § is locally
asymptotically stable by Theorem (6).
(2) Let k > 1, We have

( ) B lk—1 k+1
f(k(r 1)) fc[(k) (r——l) “1}
where f(z) is defined in (10).

k.
(i) Assume that s < k ({—j) = , then f(-’%,—%) < 0. Hence § > 5S¢~ and
gl < %- Therefore § is locally asymptotically stable.
51
(ii) Assume that s > k (2:1) , then f{( 'Z(’f, g) > 0. Hence § < %((—’:—:—3 and
g**1 > £. Therefore § is unstable (saddle).
k+1

(iii) Assume that s = k (tl) T, then f(25=1) = 0. Then j = sk=1) and

F—1 k(r—1) k(r—1)
gl = #- Therefore § is non-hyperbolic. W]
Lemma 2. If {y,}2 _, is a solution of Eq.(9), then

a _an

- 5 SYon < ( Z)erﬁ" n>1 (15

148245 +yo10] ~
and
a o(1-p6")

Sym—1 < +y-16", n2>1
—gn k 1-—
1+8 [9‘%—_%1 + yoﬂ’“] b (16)
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where a=s/r and 8= 1/r.
Proof. We have ﬁ < Yntr < 24 ¥2=L Hence
o
— < < _ > 0. 17
1+ﬂyﬁ_yn+1_a+ﬁyn 1, 2 ( )
Inequalities (15) and (16) are obtained by (17), using induction on n. O
Corollary 2. Assume thatr > 1. Let {y,},._, be a solution of Eq.(9) and A =
limy, oo SUP Yy, and X = limy,—, o0 inf 4, then A and X satisfy the two inequalities,
s s
—— < A<AKL , 18
r+ ()T T Tr—-1 (18)
and
s+ A s+ A
<A<KAKL 19
r+Ak_)\_ T4 AR (19)

Proof. Inequality (18) is a direct consequence of (15), and (16). For every € €
(0,A) 3np € N such that A — e <y, < A+¢VYn > ng. Then

s+A—¢€ s+A+e
— T Ly K ———  Vn > mng+ 1.
rrhref T rr (- eF °
Therefore, f_:'—A)‘,c <A<AKL :j}{}g. O

In the following we denote by Iy = [0, T%J .

Lemma 3. Assume that r > 1. The interval Iy is invariant under the function

s+x
G = . 20
(z,9) Y (20)
Proof. Let z,y € Iy. Then
O<—i—k<G(x,y)<s+x i
s T r—1
T+ —1
O
Theorem 11. Assume that r > 1. If the system
s+ stz
= = 21
L and r+yk’ (1)

has exactly one solution in I2, then the equilibrium point § is a global attractor.

Proof. Let {yn}re_; be a solution of Eq.(9), A = lim, e infy, and A =
limy, 00 SUP Y. By corollary (2), A, A € Iy, which is invariant under G(z,y)
(defined in (20)). By Theorem (7), 7 is a global attractor. O

1
Theorem 12. If r > 1+ (ks*)™7, then system (21) has ezactly one solution
in I2.
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Proof. Assume that (z,%) is a solution of system (21) in IZ. Then we have

r+zb =241 and r+yf=241
y T

Hence, 2% —yF = 2 — 2 = #2=¥) ' Agsume towards a contradiction that T # y

s
Yy Ty

say (y < z). Hence

zF — ok s

-y gy

By the Mean Value Theorem, there exists ¢ € (y,z) such that 2 = kb1,

k
When k > 1, we have % < ko*~! which implies that r — 1 < & (%)

which is a contradiction. When k < 1, we have ﬁ < ky*~! which implies that

k
r—1<k (ﬁ , which is a contradiction. Then system (21) has exactly one
solution (z,y) = (7, 7). O

In the following Theorem we establish a sufficient condition for the global
asymptotic stability of Eq.(9).

Theorem 13. If r > 1+ (ksk)ﬁf, then the equilibrium point § of Eq.(9) is
globally asymptotically stable.

Proof. In the case where k < 1, §j is locally asymptotically stable by Theorem

1
(10), and in the case where k > 1, the condition r > 1 + (ks*)™7 implies
N k ¥ ;
that ( ’;‘—_'1‘) < (f) , whence s < k ( %—:—}) which implies that 7 is locally

asymptotically stable. By combining Theorems (11) and (12), we see that § is
globally asymptotically. O

In the following, we show that the equilibrium point 7 of the equation
S+ Yn—1
r+yk

where r < 1, is a global attractor with some basin that depends on the coeffi-
cients. Let % be the equilibrium point of Eq.(22). We can see that

Yn+1 = , n=0,1,.., (22)

o< 2 it g <Lk
g < A ifand only if 7 < Ki=r)’
o> 2 i g 0=k
y > % if and only if y>k(1—r)’
gl 5 e wif g S1—F)
i} % if and only if g RA=r)

In the following Theorem a sufficient condition for 7 to be locally asymptoti-
cally stable will be given.
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Theorem 14. Assume that r < 1. The following statements are true
(1) If k> 1, then § is unstable.
(2) Assume that k < 1. We have:

k+1
(@) Ifs>k (}:Z) _k_, then ¥ is locally asymptotically stable.
(i) If s< k (i:;) T, then § is unstable, in fact saddle.

i) If s =k (i=¢ , then § is non-hyperbolic.
1=k

Proof. (1) Clearly, if & > 1, then § > H, whence, 7*t! > ++ Hence by
Theorem (6), 7 is unstable.
(2) Assume that k < 1. Consider the function f(z) = z**! + (r — 1)z — s.

We have
f(s(l —k)) _ s [(f)k <1_k>k+1 _1:| .
k(1-r)" k|\k 1-r
kgl
(i) Assume that s > k <}:£) ", then f(i((i:’i%) > 0. Hence § < Z((i 13 and
gk+1 < 8

1. Hence ¥ is locally asymptotically stable.

k+1
(ii) Assume that s < k (%: ) - , then f(i((l1 ’:)) < 0. Hence § > Z((llzlﬁg and
g¥*! > 2. Therefore 7 is unstable (saddle).

k41
(iii) Assume that s = k (%:Z) " then f (Z((ll__li))) =0. Then g Z((ll 13 and
g+t = #- Therefore 7 is non-hyperbolic. -

In the following we denote by G(z,y) = Tsfy“;; .

Lemma 4. As‘fulme that r <1 and k < 1.
(1) Ifr>s7% , then I =[1,%] is invariant under G and I contains .
(2) Ifr>1+s—s*, then I = [s,1] is invariant under G and I contains 7.

Proof. (1) The condition r > s implies that s > 1. Hence by Lemma (1),
ge(1,2). Let z,y € [1, £], then we have

1 s+ 2
1= <Gy = 1
1+ ()

(2) The condition r > 1+ s—s*, implies that s < 1. Also we can see that s < 7.
Hence by Lemma (1) § € [s,1]. Let z,y € [s, 1], then we have

s+ s S+ s+1
<G =
1+1 (@) r+yk T r4sk—

s =
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Theorem 15. Assume that r<l, k<l.
() Ifr <s< (% k“)’“—, then system (21) has ezactly one solution (z,y) €
2
[1,5]"
(i3) If k < s <r, then system (21) has ezactly one solution (z,vy) € [s, 1]2.

Proof. Assume that (z,y) € I? is a solution of system (21), and y < z, where
I =11,%] in statement (i) and I = [s, 1] in statement (ii). Then as before

ak—yF s
z-y zy
There exists ¢ € (y, z) such that 2 = kc*~* < ky*~. Hence ky* > 2.
(i) Since r < s, then {1, 2] contains g. Since 1 <z,y < 2, then k (i)lc > kyt >

2 > =r, whence s* > rt k , which is a contradiction. Therefore, z =y = §.

(i) Since s < r < 1, then [s, 1] contains §. Since s < z,y < 1, then k > ky* >
2 > s, which is a contradiction. Therefore, z =y = 3. a

Theorem 16 Assume that r1< landk < 1. )
() If re=1 <s< (1 rR*1)% | then § is a global attractor with basin [1,2]".
() If r>1+s—5s* and k < s, then § is a global attractor with basin [s, 1]2.

Proof. (i) By Lemma (4) the interval [1,£] is invariant under G and contains

g. The condition r¥T < s < (gret)F * implies that system (21) has a unique

solution in [1, —] By Corollary (1) 7 is a global attractor with basin [1, ]2.
(ii) By the same argument of (i) we can prove (ii).

Theorem 17. Assume thatr <1, k< 1. :

(@) If PET < g < (%rk"‘l)%, then 7 is globally asymptotically stable with
basin [1, %]2

(@) If r>1+s—s* and k < s, then §j is globally asymptotically stable with
basin [s, 1]>.

Proof. (i) Since r<1landk <1, then r < r¥T < 5. The condition . rFT <
s< (} k‘“) 1mplies that k < r™F < r. Hence, k < r < r==T < s. Therefore,
£>1> (= )T hence s > k({=%) . In view of Theorem (14), g is locally
asymptotlcally stable and by Theorem (16), 7 is globally asymptotically stable
with basin [1, 5]2

(ii) Since, r > 1+s—s’° then s < 1. The COIldlthl’l s—sfF+1<r<1
implies that s < 1, Whlch in turn that s < s — s* + 1. Hence k < s < 7.
2 )_Jkr_ By Theorem (14), 7 is locally asymptotically
stable. Again, by Theorem (16), whence ¥ is globally asymptotically stable with
basin [s, 1]%. O

Now, we give examples in which conditions of Theorem (17) hold.
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Example 1. Consider the recursive sequence
S+ Tp—1
0.3+ 291’

It is easy to show that for every s € (1.15,17714.7), § is globally asymptotically
stable with basin [1, ;%5].

Tp+l = TLZO,].,....

The following Theorem shows that outside the basins indicated in the above
Theorem, we can establish unbounded solutions for Eq.(22).

Theorem 18. Assume thatr <1, y*; <(1—71), y§ >1—r+ 1\/% Then
lim yo, =00 and lim yon—1 =0.
n—oo n—oo

Proof. By induction on n, we can see that yo,_1 < /1 —r, and yon, > 15 + %o.

Hence limy, o0 Y20 = 00, and consequently, lim, . yon—1 = 0. O

Now, we study the global behavior of Eq.(9) when r = 1, that is Eq.(9) yields

3+yn—1
14+yk 7

In the sequel we assume that s # 0, otherwise see section (2).

Yn+1 = n=0,1,... . (23)

Lemma 5. (a) Assume that k < 1. Then the unique equilibrium point j = *+/s
of Eq.(23) is locally asymptotically stable.

(b) Assume that k > 1. Then the unique equilibrium point § = *%/s of
Eq.(23) is unstable. In fact, saddle.

Proof. Tt is clear that Eq.(23) always has a unique equilibrium point § = **/s.
We can show that

—kg* 1
e
Y )

(a) Let k < 1, whence, the condition |p| < 1 —¢ <= (k—1)§* <0, and
1-¢<2 < 0< 2+7" is always true. Therefore, the equilibrium point
¥ = *H/s is locally asymptotically stable.

(b) Let k > 1, whence, the condition |[p| > |1 —¢| <= (k- 1)7* >0,
and p% 4+ 4q > 0 is always true. Therefore, the equilibrium point § = **/s is
unstable. In fact, saddle. O

In the sequel we denote 7 the unique equilibrium point of Eq.(23).
Theorem 19. The system

s+x s+y

= d =
T VT I

has exactly one solution (g, 7).

(24)
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Proof. Assume on the contrary that the system (24) has a solution (z,y) such
that = # y, then we get zy(y*~! — z%~1) = 0, since, z # y. Hence zy = 0 so
either z = 0 or y = 0 both of them imply that s = 0, which is a contradiction.
Therefore the system has exactly one solution (7, 7). O

N.B: Clearly, system (25) has exactly one solution if and only if Eq.(23) has
no prime period two solutions. Consider, the function G(z,y) = —l%'w%;

Theorem 20. Assume that k < 1.
(a) If s < 1, then [s, 1] is invariant under G(z,y) and § € [s,1].
(b) If s > 1, then [1, 5] is invariant under G(z,y) and § € [1,s].

Proof. (a) Let s <1 and k < 1, we have

s+s s+y s+1
= <G = <
s 1+1°~ (:c,y) 142k — 1+8F
Therefore, [s, 1] is invariant under G. One can see that § € [s, 1].
(b) Let s > 1 and k < 1, we have

<1

s+1 54+y s+s
1< L —2 =G < =
S{3# ST GV ST
Therefore, (1, s] is invariant under G. One can see that § € {1, s|. This completes
the proof. , O

We combine Corollary (1), Lemma (5), Theorems (19) and (20), to obtain the
following results.

Theorem 21. Assume that k < 1. Then the equilibrium point 17 = *Ys of
Eq.(23) is globally asymptotically stable with basin [s, 1]2 when s < 1 and with
basin [1, 5% when s > 1.
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