• Title/Summary/Keyword: semiconductor radiation detector

Search Result 68, Processing Time 0.024 seconds

Growth and characterization of detector-grade CdMnTeSe

  • J. Byun ;J. Seo;J. Seo ;B. Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4215-4219
    • /
    • 2022
  • The Cd0.95Mn0.05Te0.98Se0.02 (CMTS) ingot was grown by the vertical Bridgman technique at low pressure. All wafers showed high resistivity, which suggests potential as a room-temperature semiconductor detector. The resistivity of the CMTS planar detector was 1.47 × 1010 Ω·cm and mobility lifetime product of electrons was 1.29 × 10-3 cm2/V. The spectroscopic property with Am-241 and Co-57 was evaluated. The energy resolution about 59.5 keV gamma-ray of Am-241 was 11% and the photo-peak of 122 keV gamma-ray from Co-57 was clearly distinguished. The result shows the first detector-grade CMTS in the world and proves CMTS's potential as a radiation detector operating at room temperature.

A Study on the Characteristics of Therapy Radiation Detector with Diode (다이오드를 이용한 치료방사선 검출기의 특성에 관한 연구)

  • 이동훈;지영훈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • High-energy and high-dose X-ray and electron beam have been used in radiation therapy after developing particle accelerators. It is recommended to irradiate patients exect real dose for improving therapy effectiveness by International Committee on Radiation Units and Measurement. The radiation detector for daily beam checks of medical accelerators is described. Using thirteen silicon diodes, we have designed the diode detector providing information about calibration, beam symmetry, flatness, stability variation according to radiation damage, time and general quality assurance for both photon and eletron beams. we also compared these measurement values with those of using ionization chamber, film and semiconductor dosimeter.

  • PDF

Relation Between Flat-band Voltage and Quantum Efficiency of InSb MWIR Detector (InSb 중적외선 검출기의 Flat-band 전압과 양자효율의 상관관계)

  • Kim, Young-Chul;Eom, JunHo;Jung, Han;Kim, SunHo;Kim, NamHwan;Kim, Young-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.12-15
    • /
    • 2018
  • InSb (III-V compound semiconductor) is used for photodiode to detect the mid-wavelength infrared radiation. Generally the quantum efficiency of InSb IR FPAs(Focal Plane Arrays) is known to be determined by thickness of InSb and transmittance of anti-reflection coating layer. In this study, we confirmed that the C-V characteristics of detector array affects the quantum efficiency of the InSb IR FPAs. We fabricated the IR FPAs with various $V_{fb}$(flat band voltage) values and confirmed the tendency between the $V_{fb}$ value and quantum efficiency of the IR FPAs.

Sensitivity Variations with pre-irradiation dose to P-type Semi conductor for radiation dosimetry

  • 최태진;김옥배
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.49-57
    • /
    • 1995
  • The semiconductor detector has a high sensitive to radiation and a small volume. It has been frequently used in high energy photon and electron beamdosimetry. However, Semiconductor detector are subject to radiation damage in high energy radiation beam which reduces the sensitivity and creat a large discrepancy. In this experiments, P-type semiconductor was irradiated to 18 MeV electron beam with pre-irradiation for reducing the sensitivity for high reproducibility and investigated the dose characteristics against the dose rate variations. The sensitivity per unit dose in small dose rate showed a 35% large different to a large dose rate with pre-irradiation dose for 0.5 KGy and 20% for 3 KGyin this study. The silicon detector has showed a large dependency of beam direction with 13% discrepancy and a linear sensitive as increased temperature.

  • PDF

A Study on Development of a PIN Semiconductor Detector for Measuring Individual Dose (개인 선량 측정용 PIN 반도체 검출기 개발에 관한 연구)

  • Lee, B.J.;Lee, W.N.;Khang, B.O.;Chang, S.Y.;Rho, S.R.;Chae, H.S.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • The fabrication process and the structure of PIN semiconductor detectors have been designed optimally by simulation for doping concentration and width of p+ layer, impurities re-contribution due to annealing and the current distribution due to guard ring at the sliced edges. The characteristics to radiation response has been also simulated in terms of Monte Carlo Method. The device has been fabricated on n type, $400\;{\Omega}cm$, orientation <100>, Floating-Zone silicon wafer using the simulation results. The leakage current density of $0.7nA/cm^2/100{\mu}m$ is achieved by this process. The good linearity of radiation response to Cs-137 was kept within the exposure ranges between 5 mR/h and 25 R/h. This proposed process could be applied for fabricating a PIN semiconductor detector for measuring individual dose.

A Monochromatic X-Ray CT Using a CdTe Array Detector with Variable Spatial Resolution

  • Tokumori, Kenji;Toyofuku, Fukai;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.411-414
    • /
    • 2002
  • The CdTe semiconductor detector has a higher detection efficiency for x-rays and $\square$amma rays and a wider energy band gap compared with Si and Ge semiconductor detectors. Therefore, the size of the detector element can be made small, and can be operated at room temperature. The interaction between a CdTe detector and incident x-rays is mainly photoelectric absorption in the photon energy range of up to 100 keV. In this energy range, Compton effects are almost negligible. We have developed a 256 channel CdTe array detector system for monochromatic x-ray CT using synchrotron radiation. The CdTe array detector system, the element size of which is 1.98 mm (h) x 1.98 mm (w) x 0.5 mm (t), was operated in photon counting mode. In order to improve the spatial resolution, we tilted the CdTe array detector against the incident parallel monochromatic x-ray beam. The experiments were performed at the BL20B2 experimental hutch in SPring-8. The energy of incident monochromatic x-rays was set at 55 keV. Phantom measurements were performed at the detector angle of 0, 30 and 45 degrees against the incident parallel monochromatic x-rays. The linear attenuation coefficients were calculated from the reconstructed CT images. By increasing the detector angle, the spatial resolutions were improved. There was no significant difference between the linear attenuation coefficients which were corrected by the detector angle. It was found that this method was useful for improving the spatial resolution in a parallel monochromatic x-ray CT system.

  • PDF

ANALYSIS OF CHARGE COLLECTION EFFICIENCY FOR A PLANAR CdZnTe DETECTOR

  • Kim, Kyung-O;Kim, Jong-Kyung;Ha, Jang-Ho;Kim, Soon-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.723-728
    • /
    • 2009
  • The response property of the CZT detector ($5{\times}5{\times}5\;mm^3$), widely used in photon spectroscopy, was evaluated by considering the charge collection efficiency, which depends on the interaction position of incident radiation, A quantitative analysis of the energy spectra obtained from the CZT detector was also performed to investigate the tail effect at the low energy side of the full energy peak. The collection efficiency of electrons and holes to the two electrodes (i.e., cathode and anode) was calculated from the Hecht equation, and radiation transport analysis was performed by two Monte Carlo codes, Geant4 and MCNPX. The radiation source was assumed to be 59.5 keV gamma rays emitted from a $^{241}Am$ source into the cathode surface of this detector, and the detector was assumed to be biased to 500 V between the two electrodes. Through the comparison of the results between the Geant4 calculation considering the charge collection efficiency and the ideal case from MCNPX, an pronounced difference of 4 keV was found in the full energy peak position. The tail effect at the low energy side of the full energy peak was confirmed to be caused by the collection efficiency of electrons and holes. In more detail, it was shown that the tail height caused by the charge collection efficiency went up to 1000 times the pulse height in the same energy bin at the calculation without considering the charge collection efficiency. It is, therefore, apparent that research considering the charge collection efficiency is necessary in order to properly analyze the characteristics of CZT detectors.

Study on the Applicability of Semiconductor Compounds for Dose Measurement in Electron Beam Treatment (전자선 치료 분야의 선량 측정을 위한 반도체 화합물의 적용가능성 연구)

  • Yang, Seungwoo;Han, Moojae;Shin, Yohan;Jung, Jaehoon;Choi, Yunseon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, it was intended to replace the existing plane parallel ionization chamber, which requires cross-calibration in electron beam treatment. The semiconductor compounds HgI2 was fabricated as detector, and the characteristics of HgI2 detector for the 6, 9 and 12 MeV electron beam was analyzed in the linear accelerator. It was also intended to evaluate the possibility of substitution with existing detectors and their applicability as electron beam dosimetry and to use them as a basic study of the development of electronic beam dosimeter. As a result of reproducibility, RSD was 0.4246%, 0.5054%, and 0.8640% at 6, 9, and 12 MeV energy, respectively, indicating that the output signal was stable. As a result of the linearity, the R2 was 0.9999 at 6 MeV, 0.9996 at 9 MeV, and 0.9997 at 12 MeV showed that the output signal is proportional to HgI2 as the dose is increased. The HgI2 detector of this study is highly applicable to electron beam measurement, and it may be used as a basic research on electron beam detection.