Browse > Article
http://dx.doi.org/10.1016/j.net.2022.06.007

Growth and characterization of detector-grade CdMnTeSe  

J. Byun (Dept. of Health and Safety Convergence Science, Korea University)
J. Seo (Dept. of Health and Safety Convergence Science, Korea University)
J. Seo (Dept. of Health and Safety Convergence Science, Korea University)
B. Park (Dept. of Health and Safety Convergence Science, Korea University)
Publication Information
Nuclear Engineering and Technology / v.54, no.11, 2022 , pp. 4215-4219 More about this Journal
Abstract
The Cd0.95Mn0.05Te0.98Se0.02 (CMTS) ingot was grown by the vertical Bridgman technique at low pressure. All wafers showed high resistivity, which suggests potential as a room-temperature semiconductor detector. The resistivity of the CMTS planar detector was 1.47 × 1010 Ω·cm and mobility lifetime product of electrons was 1.29 × 10-3 cm2/V. The spectroscopic property with Am-241 and Co-57 was evaluated. The energy resolution about 59.5 keV gamma-ray of Am-241 was 11% and the photo-peak of 122 keV gamma-ray from Co-57 was clearly distinguished. The result shows the first detector-grade CMTS in the world and proves CMTS's potential as a radiation detector operating at room temperature.
Keywords
CdMnTeSe; Vertical bridgman technique; Radiation detector; Characterization;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Watanabe, H. Tajima, Y. Fukazawa, Y. Ichinohe, S. Takeda, T. Enoto, T. Fukuyama, S. Furui, K. Genba, K. Hagino, A. Harayama, Y. Kuroda, D. Matsuura, R. Nakamura, K. Nakazawa, H. Noda, H. Okada, M. Ohta, M. Onishi, S. Saito, G. Sato, T. Sato, T. Takahashi, T. Tanaka, A. Togo, S. Tomizuka, The Si/CdTe semiconductor Compton camera of the ASTRO-H soft gamma-ray detector (SGD), Nucl. Instrum. Meth. A. 765 (2014) 192-201, https://doi.org/10.1016/j.nima.2014.05.127.    DOI
2 K. Iniewski, CZT detector technology for medical imaging, J. Instrum. 9 (11) (2014), C11001, https://doi.org/10.1088/1748-0221/9/11/c11001.    DOI
3 A. Burger, M. Groza, Y. Cui, U.N. Roy, D. Hillman, M. Guo, L. Li, G.W. Wright, R.B. James, Development of portable CdZnTe spectrometers for remote sensing of signatures from nuclear materials, Phys. Status. Solidi. A. C2 (2005) 1586-1591, https://doi.org/10.1002/pssc.200460839.    DOI
4 K. Hitomi, T. Onodera, T. Shoji, Influence of zone purification process on TlBr crystals for radiation detector fabrication, Nucl. Instrum. Meth. A. 579 (1) (2007) 153-156, https://doi.org/10.1016/j.nima.2007.04.028.    DOI
5 A. Kargar, E. Ariesanti, S. James, D.S. McGregor, Charge collection efficiency characterization of a HgI2 Frisch collar spectrometer with collimated high energy gamma rays, Nucl. Instrum. Meth. A. 652 (1) (2011) 186-192, https://doi.org/10.1016/j.nima.2010.08.057.    DOI
6 Y. He, M. Petryk, Z. Liu, D.G. Chica, I. Hadar, C. Leak, W. Ke, I. Spanopoulos, W. Lin, D. Chung, B.W. Wessels, Z. He, M.G. Kanatzidis, CsPbBr3 perovskite detectors with 1.4 % energy resolution for high-energy g-rays, Nat. Photonics. 15 (1) (2021) 36-42, https://doi.org/10.1038/s41566-020-00727-1.    DOI
7 R. Mats, M. Weidner, Charge collection efficiency and space charge formation in CdTe gamma and X-ray detectors, Nucl. Instrum. Meth. A. 406 (1998) 287, https://doi.org/10.1016/S0168-9002(98)91988-X.    DOI
8 K. Yokota, H. Nakai, K. Satoh, S. Katayama, Segregation coefficients and activation of indium in cadmium telluride grown from tellurium-rich melt by the Bridgman technique, J. Cryst. Growth 112 (4) (1991) 723-728, https://doi.org/10.1016/0022-0248(91)90127-Q.    DOI
9 P. Fochuk, O. Panchuk, P. Feychuk, L. Shcherbak, A. Savitskyi, O. Parfenyuk, M. Ilashchuk, M. Hage-Ali, P. Siffert, Indium dopant behaviour in CdTe single crystals, Nucl. Instrum. Meth. A. 458 (1-2) (2001) 104-112, https://doi.org/10.1016/S0168-9002(00)00926-8.    DOI
10 S. Hwang, H. Yu, A.E. Bolotnikov, R.B. James, K. Kim, Anomalous Te inclusion size and distribution in CdZnTeSe, IEEE Trans. Nucl. Sci. 66 (2019) 2329, https://doi.org/10.1109/TNS.2019.2944969.    DOI
11 Q. Li, W. Jie, L. Fu, X. Wang, X. Zhang, Metal-CdZnTe contact and its annealing behaviors, Appl. Surf. Sci. 253 (3) (2006) 1190-1193, https://doi.org/10.1016/j.apsusc.2006.01.058.    DOI
12 Y. Du, W. Jie, T. Wang, T. Xu, L. Yin, P. Yu, G. Zha, Vertical Bridgman growth and characterization of CdMnTe crystals for gamma-ray radiation detector, J. Cryst. Growth 318 (1) (2011) 1062-1066, https://doi.org/10.1016/j.jcrysgro.2010.11.086.    DOI
13 M. Lingg, A. Spescha, S.G. Haass, R. Carron, S. Buecheler, A.N. Tiwari, Structural and electronic properties of CdTe1-xSex films and their application in solar cells, Sci. Technol. Adv. Mater. 19 (1) (2018) 683-692, https://doi.org/10.1080/14686996.2018.1497403.    DOI
14 https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. 
15 N. Zhang, A. Yeckel, A. Burger, Y. Cu, K.G. Lynn, J.J. Derby, Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride, J. Cryst. Growth 325 (1) (2011) 10-19, https://doi.org/10.1016/j.jcrysgro.2011.04.041.    DOI
16 R.B. James, T.E. Schlesinger, J. Lund, M. Schieber, Semiconductors and Semi-metals Semiconductors for Room Temperature Nuclear Detector Applications, Elsevier, New York, 1995. 
17 H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, R. Ohno, THM growth and characterization of 100 mm diameter CdTe single crystals, IEEE Trans. Nucl. Sci. 56 (4) (2009) 1717-1723, https://doi.org/10.1109/TNS.2009.2016843.    DOI
18 K. Kim, S. Cho, J. Suh, J. Hong, S. Kim, Gamma-ray response of semi-insulating CdMnTe crystals, IEEE Trans. Nucl. Sci. 56 (3) (2009) 858-862, https://doi.org/10.1109/TNS.2009.2015662.    DOI
19 A.E. Bolotnikov, N.M. Abdul-jabbar, O.S. Babalola, G.S. Camarda, Y. Cui, A.M. Hossain, E.M. Jackson, H.C. Jackson, J.A. James, K.T. Kohman, A.L. Luryi, R.B. James, Effects of Te inclusions on the performance of CdZnTe radiation detectors, IEEE Trans. Nucl. Sci. 55 (5) (2008) 2757-2764, https://doi.org/10.1109/TNS.2008.2003355.    DOI
20 A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. Yang, A. Hossain, K. Kim, R.B. James, Haracterization and evaluation of extended defects in CZT crystals for gammaray detectors, J. Cryst. Growth 379 (2013) 46-56, https://doi.org/10.1016/j.jcrysgro.2013.01.048.    DOI
21 P. Rudolph, M. Manfred, Basic problems of vertical Bridgman growth of CdTe, Mater. Sci. Eng. B. 16 (1-3) (1993) 8-16, https://doi.org/10.1016/0921-5107(93)90005-8.    DOI
22 U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications, Sci. Rep. 9 (1) (2019) 1-7, https://doi.org/10.1038/s41598-018-38188-w.    DOI
23 K. Kim, A.E. Bolotnikov, G.S. Camarda, R. Tappero, A. Hossain, Y. Cui, J. Franc, L. Marchini, A. Zappettini, P. Fochuk, G. Yang, R. Gul, R.B. James, New approaches for making large-volume and uniform CdZnTe and CdMnTe detectors, IEEE Trans. Nucl. Sci. 59 (4) (2012) 1510-1515, https://doi.org/10.1109/TNS.2012.2202917.    DOI
24 Y. Eisen, Y. Horovitz, Correction of incomplete charge collection in CdTe detectors, Nucl. Instrum. Meth. A. 353 (1994) 60, https://doi.org/10.1016/0168-9002(94)91603-9.    DOI
25 A.E. Bolotnikov, N. Abdul-Jabber, S. Babalola, G.S. Camarda, Y. Cui, A. Hossain, E. Jackson, J. James, K.T. Kohman, A. Luryi, R.B. James, Effects of Te inclusions on the performance of CdZnTe radiation detectors, IEEE Trans. Nucl. Sci. 55 (5) (2008) 2757-2764, https://doi.org/10.1109/TNS.2008.2003355.    DOI
26 U.N. Roy, A.E. Bolotnikov, G.S. Camarda, Y. Cui, A. Hossain, K. Lee, M. Marshall, G. Yang, R.B. James, Growth of CdTexSe1-x from a Te-rich solution for applications in radiation detection, J. Cryst. Growth 386 (2014) 43-46, https://doi.org/10.1016/j.jcrysgro.2013.09.039.    DOI
27 U.N. Roy, A. Burger, R.B. James, Growth of CdZnTe crystals by the traveling heater method, J. Cryst. Growth 379 (2013) 57-62, https://doi.org/10.1016/j.jcrysgro.2012.11.047.    DOI
28 E. Kim, Y. Kim, A.E. Bolotnikov, R.B. James, K. Kim, Detector performance and defect densities in CdZnTe after twostep annealing, Nucl. Instrum. Meth. A. 923 (2019) 51-54, https://doi.org/10.1016/j.nima.2019.01.064.    DOI
29 K. Kim, S. Hwang, H. Yu, Y. Choi, Y. Yoon, A.E. Bolotnikov, R.B. James, Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity, IEEE Trans. Nucl. Sci. 65 (8) (2017) 2333-2337, https://doi.org/10.1109/TNS.2018.2856805.   DOI
30 U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects, Sci. Rep. 9 (1) (2019) 1-7, https://doi.org/10.1038/s41598-019-43778-3.    DOI
31 U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects, Appl. Phys. Lett. 114 (23) (2019), 232107, https://doi.org/10.1063/1.5109119.    DOI
32 B. Park, Y. Kim, J. Seo, J. Byun, J. Dedic, J. Franc, A.E. Bolotnikov, R.B. James, K. Kim, Bandgap engineering of Cd1-xZnxTe1-ySey (0< x< 0.27, 0< y< 0.026, Nucl. Instrum. Meth. A. (2022), 166836, https://doi.org/10.1016/j.nima.2022.166836.    DOI
33 S.U. Egarievwe, E.D. Lukosi, R.B. James, U.N. Roy, J.J. Derby, Advances in CdMnTe nuclear radiation detectors development, in: 2018 IEEE Trans. Nucl. Sci. Conf. R, 2018, https://doi.org/10.1109/NSSMIC.2018.8824694.    DOI
34 U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, O.K. Okobiah, S.U. Egarievwe, R.B. James, Growth of CdMnTe free of large Te inclusions using the vertical Bridgman technique, J. Cryst. Growth 509 (2019) 35-39, https://doi.org/10.1016/j.jcrysgro.2018.12.026.    DOI
35 G.W. Wright, R.B. James, D. Chinn, B.A. Brunett, R.W. Olsen, J. Van Scyoc, M. Clift, A. Burger, K. Chattopadhyay, D. Shi, R. Wingfield, Evaluation of NH4F/H2O2 effectiveness as a surface passivation agent for Cd1-xZnxTe crystals, Proc. SPIE 4141 (2000) 324, https://doi.org/10.1117/12.407594.    DOI
36 K. Hecht, Zum Mechanismus des lichtelektrischen Primarstromes in isolierenden Kristallen, Z. Phys. 77 (3-4) (1932) 235-245, https://doi.org/10.1007/BF01338917.    DOI