• 제목/요약/키워드: semiconductor quantum well

검색결과 101건 처리시간 0.026초

유전 알고리즘을 이용한 다중 양자 우물 구조의 갈륨비소 광수신소자 공정변수의 최적화 (Optimization of Device Process Parameters for GaAs-AlGaAs Multiple Quantum Well Avalanche Photodiodes Using Genetic Algorithms)

  • 김의승;오창훈;이서구;이봉용;이상렬;명재민;윤일구
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.241-245
    • /
    • 2001
  • In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.

  • PDF

Analysis of Detuning-filter-assisted All-optical Wavelength Conversion Based on a Semiconductor Optical Amplifier with Strong Wavelength Dependence of Gain and Phase

  • Qin, Cui;Zhao, Jing;Yu, Huilong;Zhang, Jian
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.579-586
    • /
    • 2017
  • In this paper, we theoretically demonstrate that semiconductor optical amplifiers (SOAs) with strong wavelength dependence of gain and phase are capable of all-optical inverted and non-inverted wavelength conversion (WC) over a wide range, with the assistance of an optical filter. First, the gain dynamics and phase dynamics in a common quantum well (QW) SOA with the $In_{0.53}Ga_{0.47}As/In_{0.7322}Ga_{0.2678}As_{0.5810}P_{0.4190}$ material system are found to be strongly dependent on wavelength, which is mainly related to the wavelength dependence of the differential gain and the differential refractive-index change. Second, the wavelength dependence in an all-optical wavelength converter based on the QW SOA cascaded with a detuning band pass filter is studied. Simulations show that the quality of the converted signal has little dependence on the operation wavelength. Both inverted and non-inverted WC can be achieved, over a large wavelength range. Therefore, although the gain and phase change are strongly wavelength-dependent, the effects of this dependence can be erased by appropriate optical filtering.

Study on the Self-Aligned HgTe Nanocrystallites Induced by Controlled Precipitation Technique in HgTe-PbTe Quasi-Binary Semiconductor System: Part I. TEM Study

  • Lee, Man-Jong
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.226-231
    • /
    • 2002
  • The present study discusses the results of the controlled precipitation of HgTe nanocrystals in a PbTe semiconductor matrix and demonstrates its effectiveness in producing well-organized and crystallographically aligned semiconductor nanocrystals. Following the similar procedure used in metallic alloys, the semiconductor alloys are treated at 600$^{\circ}C$ for 48 hours, quenched and aged up to 500 hours at 300$^{\circ}C$ and 450$^{\circ}C$ to induce homogeneous nucleation and growth of HgTe nanocrystalline precipitates. Examination of the resulting precipitates using transmission electron microscopy (TEM) and high resolution TEM (HRTEM) reveals that the coherent HgTe precipitates form as thin discs along the {100} habit planes making a crystallographic relation of {100}$\sub$HgTe///{100}$\sub$PbTe/ and [100]$\sub$HgTe///[100]$\sub$PbTe/. It is also found that the nato-disc undergoes a gradual thickening and a faceting under isothermal aging up to 500 hours without any noticeable coarsening. These results, combined with the extreme dimension of the precipitates (4 nm in length and sub-nanometer in thickness) and the simplicity of the formation process, leads to the conclusion that controlled precipitation is an effective method for the preparation of the desirable quantum-dot nanostructures.

  • PDF

GaN 기반 발광 다이오드(LED)의 특성 분석 (Characteristic analysis of GaN-based Light Emitting Diode(LED))

  • 이재현;염기수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.686-689
    • /
    • 2012
  • 본 논문에서는 ISE-TCAD를 이용하여 GaN 기반의 LED특성을 분석하였다. LED는 GaN 버퍼층을 기반으로 GaN 장벽과 InGaN 양자우물로 구성된 활성 영역, AlGaN EBL(Electron Blocking Layer)과 AlGaN HBL(Hole Blocking Layer)로 이루어져 있다. Auger 재결합률, 양자 우물의 폭과 수, EBL의 Al 몰분율의 변화에 따른 LED의 출력 전력 특성을 분석하고 효율 개선을 위한 몇 가지 기준을 제시하였다.

  • PDF

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Spectral Behaviors of Unidirectional Lasing from Various Semiconductor Square Ring Microcavities

  • Moon, Hee-Jong;Hyun, Kyung-Sook;Lim, Changhwan
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1506-1511
    • /
    • 2018
  • Spectral behaviors of lasing from semiconductor square ring microcavities with structures for unidirectional laser oscillation were investigated. When a tapered structure was introduced, the lasing envelope shifted to a shorter wavelength region. Statistical estimate of the additional loss caused by the tapered structure was carried out by analyzing spectral data from many sets of cavities with various sizes. When a saw-edged structure was introduced, the unidirectional lasing functioned well but no apparent spectral shift was observed due to negligible additional loss.

Dependence of Optical Matrix Elements on the Boundary Conditions of the Continuum States in Quantum Wells

  • Jang Y. R.;Yoo K. H.;Ram-Mohan L. R.
    • Journal of the Optical Society of Korea
    • /
    • 제9권2호
    • /
    • pp.39-44
    • /
    • 2005
  • Unlike for the bound states, several different boundary conditions are used for the continuum states above the barrier in semiconductor quantum wells. We employed three boundary conditions, infinite potential barrier boundary condition, periodic boundary condition and scattering boundary condition, and calculated the local number of states, wavefunctions and optical matrix elements for the symmetric and asymmetric quantum wells. We discussed how these quantities are related in the three boundary conditions. We argue that the scattering boundary condition has several advantages over the other two cases. These results would be useful in understanding quantum well lasers and detectors involving continuum states.

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol;Yang, Heesun
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.449-469
    • /
    • 2017
  • The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.

홀로그래픽 리소그래피에 의한 미세패턴 형성과 MOCVD에 의한 양자세선 어레이의 제작 (Micropattern generation by holographic lithography and fabrication of quantum wire array by MOCVD)

  • 김태근;조성우;임현식;김용;김무성;박정호;민석기
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.114-119
    • /
    • 1996
  • The use of holographic interference lithography and removal techniques to corrugate GaAs substrate have been studied. The periodic photoresist structure, which serves as a protective mask during etching, is holographically prepared. Subsequently periodic V-grooved pattern is formed on the GaAs substrate by conventional a H$_{2}$SO$_{4}$-H$_{2}$O$_{2}$-H$_{2}$O wet etching. The linewidth of a GaAs pattern is about 0.4$\mu$m and the depth is 0.5$\mu$m A quantum wires(QWRs) array is well formed on the V-grooved substrate by MOCVD (metalorganic chemical vapor deposition) growth of GaAs/Al$_{0.5}$Ga$_{0.5}$As (50$\AA$/300$\AA$) quantum wells. The formation of QWR array is confirmed by the temperature dependent photoluminescence (PL) measurement. The intensive PL peak with a FWHM of 6meV at 21K shows the high quality of the QWR array.

  • PDF

다양한 반도체-유전체 덮개층 조합을 이용한 InGaAs/InGaAsP 양자우물의 무질서화 (Dielectric cap quantum well disordering for band gap tuning of InGaAs/InGaAsP quantum well structure using various combinations of semiconductor-dielectric capping layers)

  • 조재원;이희택;최원준;우덕하;김선호;강광남
    • 한국진공학회지
    • /
    • 제11권4호
    • /
    • pp.207-211
    • /
    • 2002
  • 반도체-유전체 덮개층의 다양한 조합이 I $n_{0.53}$G $a_{0.47}$As/InGaAsP(Q1.25) 양자우물 무질서화에 미치는 영향을 PL(Photoluminescence)을 이용하여 조사하였다. 청색 편이에 대한 문턱 온도는 약 $750^{\circ}C$ 였으며 전반적으로 온도가 올라감에 따라 청색 편이도 점차 증가하였으나 $SiO_2$의 경우에는 온도가 올라감에 따라 포화되는 경향을 보였다. $SiN_{x}$$SiO_2$보다 더 큰 청색 편이를 야기하였는데 이것은 $SiN_{x}$의 낮은 성장 온도와 관계가 있는 것으로 생각된다. $SiN_{x}$의 경우 P의 확산이, 그리고 $SiO_2$의 경우 Ga의 확산이 청색 편이에 중요한 역할을 하는 것으로 여겨진다.겨진다.